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Abstract

Background: Currently, several studies have shown that 
consuming plant foods high in monounsaturated fatty acids 
(MUFA) and antioxidants is associated with lower risk for 
cardiovascular disease (CVD). In this perspective, Caryocar 
brasiliense (pequi) oil has a potential, since MUFA represent 
approximately 60% of its fatty acid content, and it is high in 
several antioxidant carotenoids.

Objective: To evaluate the effects of a partial replacement of lard 
(high in saturated fatty acid - SFA) by pequi oil (high in MUFA 
and carotenoids), in a Western diet model, on cardiovascular risk 
factors and ex vivo cardiac function of rats.

Methods: Animals were assigned into three groups (n = 12): 
CTRL - AIN93G control diet; HFS – high in SFA (lard) and 
sucrose diet and HFS-PO – HFS diet with 27% of lard replaced 
by pequi oil. At the end, feces, retroperitoneal and epididymal 
fat pads, blood and livers were harvested for cardiovascular 
risk factor assays (systolic blood pressure; heart rate; Lee 
index; Adiposity index; plasma, hepatic and fecal lipids; plasma 
glucose). Hearts were used for the ex vivo cardiac function.

Results: Body weight and Lee index from HFS-PO and 
HFS animals were equally higher than CTRL (p<0.05). 
Otherwise, HFS-PO diet reduced Adiposity index compared 
to HFS (p<0.05), which was reinforced by a smaller epididymal 
adipocyte diameter (p<0.05) for this group. There was less 
hepatic triglyceride accumulation for HFS-PO and this diet, 
improved the ex vivo heart contractility and relaxation indexes 
compared to HFS. There were no differences among other risk 

factors evaluated, being all equally worsened by HFS and HFS-
PO compared to CTRL.

Conclusions: The partial replacement of lard by pequi oil in a 
western diet reduced visceral adiposity, hepatic triglyceride 
deposition and ameliorated cardiac function of rats. Although it 
did not influence other markers, this can contribute for slowing 
up cardiovascular disturbances associated to the western diet 
pattern.

Keywords: Caryocar brasiliense, Pequi oil, Monounsaturated 
fatty acids, Carotenoids, Adiposity, Cardiac function, Western 
diet, Cardiovascular disease.

Introduction

Cardiometabolic disorders include hypertension, insulin 
resistance, type 2 diabetes, dyslipidemia, hepatic steatosis, and 
excess body fat, which are individually and collectively, risk 
factors for cardiovascular disease (CVD) [1]. These diseases are 
the lead cause of morbidity and mortality, affecting millions of 
people in developed and developing countries [2]. Although 
factors such as genetic determination, stress, physical inactivity, 
and smoking are all known to contribute to CVD, unhealthy 
dietary patterns is one of the most relevant, such as the “western 
diet” pattern [3].

The western diet is characterized by higher intakes of red and 
processed meat, dairy products, processed and artificially 
sweetened foods, and salt, with minimal intake of fruits, 
vegetables, fish, legumes, and whole grains. This pattern means 
a high intake of Trans and saturated fatty acids (SFA), refined 
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carbohydrates and sodium along with a very low intake of 
fibers [3-5]. Because of that, western diet can increase plasma 
triglycerides, VLDL-cholesterol hepatic synthesis as well as 
reduce HDL-cholesterol. Besides, frequent intake of high 
glycemic meals can lead to insulin resistance [6]. 

Thereby, although high intake of fat has been directly associated 
to CVD risk, recently, attention has been also addressed to the 
quality of fat, especially amount and type of fatty acids [7,8]. 
Indeed, in foods, some vegetable oils have instigated interest 
because their content of MUFA, and, or, PUFA, which have been 
associated to health benefits [9]. 

It has been shown that MUFA-rich diets are associated to lower 
cardiovascular risk [10,11] by favorably improving blood lipids 
[12], reducing blood pressure [13], and modulating insulin 
sensitivity and glycemic control [14]. Then, because of the 
potential benefices from the intake of foods high in unsaturated 
fatty acids, it is growing the scientific interest in identifying 
the fatty acid profile of many foods, especially plant foods. 
Olive, canola e avocado oils, as well as, peanut butter have been 
highlighted because they are monounsaturated fatty acid-rich. 

Although fatty acids, plant foods also have, overall, many 
bioactive compounds considered cardiovascular protectors. 
Several antioxidants are being associated to beneficial effects, 
such as carotenoids [15], which protect against oxidative damage 
in many tissues and can improve cardiac function [16,17] in 
animal models.

In this context, pequi oil is a possible aid for increasing MUFA 
and antioxidant content of diets and, in this way, contributing for 
reducing CVD risk. This oil is extracted from Caryocar brasiliense 
fruit and its major fatty acid is oleic (57%), the main MUFA in the 
diet [18]. In addition, it has a substantial amount of carotenoids 
(32 mg.100−1g) [18], especially violaxanthin, lutein, zeaxanthin, 
β-cryptoxanthin, neoxanthin and β-carotene [19,20].

Thus, pequi oil could favorably modulate cardiovascular risk 
factors. Previously in our lab, we observed that pequi oil 
improved cardiac function by increasing Serca2a/PLB ratio and 
reduced hepatic triglycerides, but it did not promote significant 
changes in systemic cardiovascular risk factors in healthy rats 
[18]. However, we thought that systemic cardiovascular risk 
factors could not have been affected clearly by pequi oil, since 
our model was healthy animals.

Therefore, the aim of this study was to investigate the effects of 
a long-term intake of pequi oil in cardiovascular risk factors and 
in the ex vivo cardiac function of rats feed a western diet (high 
in SFA and refined carbohydrates), which had its content of lard 
partially replaced by pequi oil. 

Methods

Rat study

Experimental protocol was performed in accordance with the 

principles and guidelines adopted by the Brazilian Council of 
Animal Experimentation Control (CONCEA). It was approved 
by the Ethics Committee on Animal Use/Federal University 
of Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil 
(Protocol 03/2013)

Thirty six male Wistar rats, 25 days old, were housed in individual 
stainless steel cages and kept in a room at 22 ± 2 °C and at a 12 
h light/dark cycle, with free access to food and water for 6 days 
previously and during all experimental period (12 weeks). In the 
first day of the experiment, all animals were randomly assigned 
into three treatments (n=12): CTRL – control, fed AIN93G 
diet [21]; HFS – fed a high fat sucrose diet (western diet) and 
HFS-PO – fed HFS with 27% of lard replaced by pequi oil. The 
composition of experimental diets is presented in Table 1.

Table 1: Composition of experimental diets (g.1000-1)

Ingredients
Experimental diets

CTRL HFS HFS-PO

Protein (casein) 200.0 200.0 200.0

Cornstarch 397.5 48.5 48.5

Dextrose 132.0 100.0 100.0

Sucrose 100.0 341.0 341.0

Cellulose (fiber) 50.0 50.0 50.0

Soybean oil 70.0 10.0 10,0

Mineral Mix 35.0 35,0 35.0

Vitamin Mix 10.0 10.0 10.0

L-cyistine 3.0 3.0 3.0

Choline bitartrate 2.5 2.5 2.5

Lard -- 200.0 146.0

Pequioil -- -- 54.0

CTRL= AIN93G [21]; HFS = High fat and sucrose; HFS-PO = HFS with 
27% of lard replaced by pequi oil

CTRL diet had 394.8 kcal.100-1, being 63.7% from carbohydrates, 
15.9% from lipids and 20.4% from protein. Both diets HFS and 
HFS-PO had 464.8 kcal.100-1, being 42.1% from carbohydrates, 
40.7% from lipids and 17.2% from protein. Pequi oil was 
purchased from local market.

During the experiment, body weight and food intake were 
monitored for Feed Efficiency (FER(g/g) = body gain/food 
intake) and Energy Efficiency (EER (g/Kcal) = body gain/energy 
intake) ratios [22]. Feces were collected in the last 72 hours and 
kept at -80 oC for lipid analysis.

In the last day, overnight fasted animals were anesthetized 
(quetamin + xilazin/ 50 mg/kg + 10 mg/kg), and their nose-
anus length were measured for Lee Index (LI) calculation (LI = 
[3√body wheight (g) ÷ nose = anus lenght(cm)] ×10) [22]. After 
that, all animals were euthanized by decapitation for blood and 
tissue harvesting. All retroperitoneal and epididymal fat pads 
were removed and weighted in an analytical scale (Shimadzu AX 
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200) for the Adiposity Index calculation (AdI% = (epididymal 
pad +retroperitoneal pad)/body weight – (Σepididimal pad 
+ retroperitoneal pad) *100) [23]. Blood was centrifuged in 
heparinized tubes to obtain plasma, which were aliquoted in 
eppendorf tubes and kept at -80 oC until analysis.

Cardiovascular risk factors

Systolic blood pressure (BP), as well as heart rate (HR), was 
measured at the last week prior to the end of the experiment 
by the tail-cuff plethysmography method (MLT1020PPG IR 
Plethysmograph, PowerLab). 

Fasted plasma glucose levels (GLU) were measured by a 
commercial kit, according the procedures recommended by 
the manufacturer and using a semi-automatic biochemical 
analyzer (PIOWAY-3000). Total plasma cholesterol (CHOL), 
high-density lipoprotein cholesterol (HDL-C) and triglycerides 
(TG) levels were determined using commercial kits according 
to the specifications of the manufacturer and a semiautomatic 
biochemical analyzer (PIOWAY-3000). Liver and feces samples 
were oven-dried (60 °C ± 2 °C for 72 h), and their lipids were 
extracted according to Folch et al [24]. CHOL and TG levels were 
determined using commercial kits, according to specifications 
of the manufacturer, and using a semi-automatic biochemical 
analyzer (PIOWAY-3000).

For histological analysis, sections from retroperitoneal adipose 
tissue (~100 mg) were fixed in buffered-formalin, paraffin 
embedded, sliced, and stained with hematoxylin-eosin. Results 
were obtained by means of a digital camera coupled to an optical 
microscope at 400x. All images were analyzed using the Axion 
Vision software. The hypertrophy was evaluated by measuring 
the diameter of 100 adipocytes per animal.

For cardiomyocyte diameter, hearts were fixed in 4% Bouin 
fixative solution, embedded in paraffin, and sectioned to 5 
µm thickness. To determine myocyte cross-sectional area, 
heart sections were stained with hematoxylin and eosin and 
examined at 40× magnification. Only myocytes longitudinally 
cut with the nucleus centrally located in the cell and with cellular 
limits visible were used. The cross-sectional diameter (um) 
of the myocytes was traced using ImageJ software (National 
Institutes of Health), and determined by averaging 50 to 100 

individual cardiomyocytes within the ventricular free wall over 
5 or 6 sections per animal. A single investigator blinded to the 
experimental groups performed the analysis.

Ex vivo cardiac function

In the last day of the experiment, animals were anesthetized 
(quetamin+xilazin / 50mg/kg + 10mg/kg) and decapitated 
10–15min after a 400 IU intraperitoneal heparin injection. 
Hearts were perfused in a Langendorff apparatus (ML785B2, 
AD Instruments) and left ventricular pressure (± dP/dt) was 
continuously recorded according to the Langendorff technique, 
using the Labchart 8 software. Systolic tension, diastolic tension, 
coronary flow, heart rate, and dP/dT± values were the average 
of the recorded 30 min. All the dP/dT± measurements were 
normalized to heart weight. At the end of the cardiac function 
analysis, wet heart weights were recorded, normalized for the 
body weight, and expressed as muscle mass index (mg.g-1), 
according to Almeida et al [25].

Statistics

The statistical analyses were carried out using the Statistica 
10.0 software. The experiment was carried out in a completely 
randomized design with three treatments (diets) and 12 
repetitions (animals). Data were analyzed by one way ANOVA 
and Tukey test at p<0.05, using the Statistica 10.0 software. 
Figures were drawn by means of the SigmaPlot 11.0 software.

Results

Replacing lard by pequi oil in a western diet did not affect body 
weight, having both groups HFS and HFS-PO, body weights 
higher than controls (p<0.05, Table 2). Food intake was similar 
between those groups (HFS and HFS-PO) and it was lower than 
controls (p<0.05, Table 2). There were no differences among 
experimental groups for energy intake (Table 2). However, both 
feed efficiency and energy efficiency ratios were equally higher 
for HFS and HFS-PO compared to CTRL (p<0.05, Table 2)

We also found no difference between HFS and HFS-PO for Lee 
Index, plasma cholesterol, triglycerides, HDL-C and hepatic 
cholesterol having both groups, values higher than CTRL (Table 
3). This was also seen for hepatic and fecal cholesterol, fecal 
triglycerides, systolic blood pressure and heart rate. Otherwise, 

Table 2: General characteristics of experimental groups after 12 weeks of treatment

Variables CTRL HFS HFS-PO

Body weight (g) 400.66±6.48 b 453.6111.91± a 443.8811.86± a

Food intake (g) 1853.82±74.44 a 1580.6479.47± b 1520.9134.80± b

Energy intake (Kcal) 7318.89293.90± a 7346.79369.37± a 7069.20161.76± a

Feed efficiency ratio (g.g-1) 0.1900.009± b 0.2500.007± a 0.2400.007± a

Energy efficiency ratio (g. Kcal-1) 0.0200.002± b 0.0500.001± a 0.0500.001± a

CTRL= AIN93G [21[; HFS = High fat and sucrose; HFS-PO = HFS with 27% of lard replaced by pequi oil. Feed efficiency ratio (g.g-1) = body gain/
food intake); Energy Efficiency ratio (g Kcal-1) = body gain/energy intake. Values are expressed as mean ± standard error. Means followed by 
different letters (line) are different by One way-ANOVA and Tukey test (p<0.05)
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the Adiposity Index, which represents visceral adiposity, as well 
as retroperitoneal adipocyte diameter, hepatic triglycerides and 
the muscle mass index, were kept similar to CTRL by HFS-
PO diet. In addition, plasma glucose levels and cardiomyocyte 
diameters were lower by HFS-PO diet compared to HFS, even 
though they were higher than CTRL (Table 3).

Overall, the western diet have compromised the ex vivo cardiac 
function of the animals, reducing the contractility (dP/dT+) and 
the relaxation (dP/dT-) efficiency in both groups HFS and HFS-
PO, compared to CTRL (Figure). However, the HFS-PO diet 
attenuated the effects of the HFS diet, since ameliorated both 

indexes, as well the heart rate (Figure).

Discussion

Pequi oil is a potential functional food due some of its chemical 
characteristics, such as high content of oleic acid and carotenoids 
[18-20]. Our laboratory has been investigating metabolic effects 
of this oil in healthy rats [18]. Therefore, our previous results 
have stimulated the continuity of the investigations, especially 
under obesogenic conditions. In this context, the western diet 
pattern seemed to be an adequate way to going on in further 
investigations. However, our first challenge was to define how 

Table 3: Cardiovascular risk factors of experimental groups after 12 weeks of treatment

Variables CTRL HFS HFS-PO

Lee index (g/cm3) 3.18±0.05 b 3.47±0.11 a 3.32±0.12 a

Adiposity index (%) 5.67±1.03 b 6.97±0.83 a 5.54±2.04 b

Plama glucose (mg/dL) 117.43±13.45 c 139.05±17.32 a 121.99±8.79 b

Plasma cholesterol (mg/dL) 71.12±10.53 b 84.76±10.74 a 81.10±6.42 a

Plasma triglycerides (mg/dL) 96.75±8.35 b 112.88±6.19 a 102.08±26.37 a

HDL-C(mg/dL) 47.06±10.54 a 39.35±8.03 b 40.33±7.95 b

Hepatic cholesterol (mg.g-1) 21.36±0.53 b 25.51±0.29 a 25.17±0.57 a

Hepatic triglycerides (mg.g-1) 48.12±13.67 b 62.04±8.10 a 49.03±8.16 b

Fecal cholesterol (mg.g-1) 18.14±0.38 b 19.83±0.55 a 19.78±0.38 a

Fecal triglycerides (mg.g-1) 15.47±2.69 b 18.18±3.21 a 18.24±7.69 a

Systolic blood pressure (mmHg) 134.40±17.77 b 154.32±13.28 a 154.40±18.70 a

Heart Rate (bpm) 406.25±30.68 b 446.70±60.41 a 433.06±23.78 a

Muscle mass index (mg.g−1) 3.61±0.35 b 4.95±0.49 a 3.69±0.47 b

Cardiomyocytes diameter (μm) 11.63±0.64 c 15.59±0.54 a 13.93±0.89 b

Retroperitoneal adipocyte diam-
eter (μm) 10835.75±1355.42 b 20792.50±5642.29 a 9888.1±1188.08 b

CTRL= AIN93G [21]; HFS = High fat and sucrose; HFS-PO = HFS with 27% of lard replaced by pequioil. Lee index (g/cm3) = [3√body weight (g) ÷ 
nose = anus length(cm)] ×10); Adiposity index (%) = (epididymal pad +retroperitoneal pad)/body weight – (Σ epididymal pad +retroperitoneal 
pad) *100); Muscle mass index (mg.g−1) = heart weight/body weight. Values are expressed as mean ± standard error. Means followed by different 
letters (line) are different by One way-ANOVA and Tukey test (p<0.05)
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Figure: Ex vivo cardiac function of rats fed control diet (CTRL, AIN93G diet [21[); High fat sucrose diet (HFS) and HFS diet with 27% of lard replaced 
by pequi oil (HFS-PO). dP/dT+ = Contractility index (A); dP/dT- = relaxation index (B) and ex vivo heart rate (C). Values are expressed as mean ± 
standard error. Columns with different letters are different by one way-ANOVA and Tukey test (p<0.05)
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much pequi oil to test and how to include this food in the 
experimental diets.

Therefore, we choose to include pequi oil in the diet, based on 
the intake of 02 servings per day (1 tablespoon = 1 serving), 
considering a 1.800 Kcal daily diet. Therefore, lard was replaced 
by pequi oil in order to modify the SFA/MUFA ratio and to 
increase the MUFA content, according Lopez-Huertas [26].

Although we did not observe differences in energy intake among 
groups, both HFS and HFS-PO had higher body weights at lower 
food intakes. HFS and HFS-PO diets were equally energy dense 
and higher than CTRL, so maybe, animals from those groups ate 
food as far as their energy needs. Indeed, according to Patterson 
& Levin [27], rats trend to intake food to account for their energy 
needs. 

Otherwise, the higher body weights can be explained, at least 
in part, by the differential composition of the diets. It has been 
postulated that western diets, high in fats and sucrose, lead in 
rodents, to metabolic disturbances, higher body weight and fat, 
similarly to humans [28]. Intermittent intake of high glycemic 
meals in humans also leads to hormonal changes related to 
obesity and others CMD [29]. Besides, in rats, high fat intake 
at long term disrupts energy homeostasis, favoring body weight 
gain and metabolic disturbances, such as insulin resistance, 
dyslipidemia and others [30]. In our context, replacing lard by 
pequi oil did not affect differentially the effects of the western 
diet.

It is known that western diet, due its high content of SFA and 
high glycemic load, leads to visceral lipid accumulation [31]. It 
is also known that adipose tissue from this body compartment is 
metabolically more active, more sensitive to lipolysis and more 
resistant to insulin action than subcutaneous adipose tissue [32]. 
Therefore, we can infer that the modification in the fatty acids 
profile caused by pequi oil in the HFS-PO diet, led to a lower fat 
accumulation in this region. This result was reinforced by the 
fact that hypertrophy in the retroperitoneal adipocytes was also 
reduced by pequi oil diet.

This is an important result, since visceral fat accumulation is 
highly associated to metabolic disturbances [33]. Indeed, it 
has been postulated that fat topography and body distribution 
impact more than the body weight in CVD development [34]. 
In the pequi diet, these modifications can be related to the 
higher intake of MUFA. According Krishnan and Cooper [35], 
high-MUFA diets lead to lower fat deposition, especially in the 
visceral region because this fatty acid is able to increase its own 
oxidation rate. It has been postulated that a high MUFA diet 
could activate catabolic pathways that increases fat oxidation. 
This may be a result from the degradation of insulin-induced 
gene-1 protein, and therefore, inactivation of the transcription 
factor sterol regulatory element binding protein which promotes, 
among some effects, fat oxidation [36]. These effects are seen also 
in the liver [35].

Indeed, we also could observe a protector effect from pequi oil 
in the liver fat accumulation, especially in TG. So, we believe 
that the lower visceral fat accumulation accounted for this effect. 
Lower visceral fat accumulation implies in a lower lipolysis 
rate, which can also lower free fatty acids (FFA) in the portal 
microcirculation and then, lowering TG hepatic synthesis and 
preventing local accumulation [35]. 

Indeed, Hussein et al [37] has demonstrated that a high MUFA 
diet increased fat oxidation rate in several rat tissues, including 
liver. Recently, our group showed that a pequi oil diet reduced 
hepatic TG accumulation in healthy rat livers [18]. Furthermore, 
carotenoid supply from pequi oil could have weakened stress 
oxidative caused by the western diet, in the liver fat accumulation, 
since those compounds are potent exogenous antioxidants [38].

We did not observe any beneficial effect for pequi oil in lipid 
plasma markers. In this case, it seems, visceral and liver effects 
arising from the pequi oil diet, were not sufficient to lower 
serum cholesterol, LDL-cholesterol and TG, and increase HDL-
cholesterol. The western diet provides dietary cholesterol and 
increases SFA supply. Both nutrients are associated to a reduced 
activity of LDL-cholesterol receptors in many tissues, increasing 
its blood levels [39]. Except steroidogenic tissues, cells in general, 
are unable to metabolize cholesterol, so the non-esterified 
cholesterol excess is carried by the liver, to the biliary and fecal 
output. However, this mechanism may become inefficient, and 
cholesterol accumulates in the hepatocytes [40]. Indeed, HFS and 
HFS-PO animals had higher hepatic cholesterol accumulation 
and higher fecal output. Although plasma TG had not been 
reduced by HFS-PO diet, in absolute values, it was lowered at 
10% compared to HFS, which can be biologically important in 
the development of dyslipidemia. 

The HFS diet also led to an increase of plasma glucose levels 
and the HFS-PO was able to mitigate this effect, but it did not 
restored normal values, as the CTRL diet. Considering that 
chronically FFA elevated levels upon western diets can cause 
disruption in the pancreatic β-cells, affecting insulin secretion 
and leading to hepatic and peripheral insulin resistance [41], this 
result in important. Although we could neither measure insulin 
levels nor evaluate insulin resistance in this study, maybe there 
was a delay in the glucose homeostasis disruption in the pequi oil 
group, which can contribute to prevent or hold back CVD.

Systolic blood pressure (SBP) was increased by the western diets 
(HFS and HFS-PO) and pequi oil did not bring any differential 
effect. Although high-MUFA diets have been associated to lower 
blood pressure in humans and animals [42], it has been also said 
that these effects can be lost when total dietary fat is high [43]. 
According to Heinonen et al [44], higher body weight is highly 
associated with the endothelium relaxation function, so excessive 
adiposity may lead to a arteries remodeling, turning them harder 
and thicker, which favor hypertension development [45].

In addition, the higher heart rate can be an adaptive response to 
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the higher SBP, since it leads to a higher ventricular afterload and, 
thereafter, heart rate elevation as a compensatory mechanism 
[46]. Otherwise, heart rate elevation has a direct impact over the 
arterial wall, causing mechanic stress and, possibly inflammatory 
effects in the vascular endothelium [47]. 

The cardiac function was impaired by both the western diets (HFS 
and HFS-PO) and it could be related to intrinsic myocardium 
properties. It is known that cardiac muscle has a high glucose 
and especially fatty acid uptake rate for energy production 
[48]. However, western diets are able to increase circulating 
FFA, which can leads to a high fatty acid cardiac uptake [49], 
and disruption in the activity of calcium transient proteins 
responsible by cardiac contractility [50]. Therefore, the lower 
contractility in HFS and HFS-PO animal hearts could be related 
to reduction in the L-calcium channels from cardiomyocyte 
cellular membranes and in sarcoplasmic ryanodine receptor 
activities. In this was calcium release during systole is impaired, 
reducing cardiac contractility as well [51].

Bradycardia shown by HFS and HFS-PO animals, according 
to Frank-Starling law, should be followed by an increase in 
contractility [52], not by a reduction, as seen. This could be 
explained because western diets suppress cardiac function 
overall and, in this situation, maybe there is a depression of the 
sinus node pacemaker activity [53]. 

However, it is important to consider that, although cardiac 
function was impaired in the western diet groups, replacing 
lard by pequi oil has attenuated the damage caused by that diet. 
Upon western diet, lysogenic pathways are stimulated, using as 
substrates SFA and simple carbohydrates to produce endogenous 
SFA or MUFA. However, synthesis of desaturases does not 
follow the fatty acid generation, leading to an imbalance into 
SFA/MUFA ratio and stimulating the replacement of MUFA by 
SFA in cardiomyocytes, which is also associated with contractile 
dysfunction of the cardiac muscle [54]. We believe that the high 
supply of MUFA in the pequi oil diet could have favored their 
incorporation into the cardiomyocyte membranes, ameliorating 
the dysfunction cause by SFA/MUFA impairment.

Conclusion and perspectives

Taken together, our data indicates that replacing lard by pequi oil 
in a western diet reduced visceral and hepatic lipid accumulation, 
as well as, attenuated deleterious effects from this dietary pattern 
in the cardiac function. Although it did not influence other 
markers, this can contribute for slowing up cardiovascular 
disturbances associated to the western diet pattern.

Therefore, future investigations should be directed to investigate 
mechanisms that are beyond the visceral and hepatic lipid 
accumulation pequi oil lowering-effect, including molecular 
pathways controlling lipid metabolism and redox state in those 
these tissues.
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