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Abstract 

The Casimir effect is attractive in most vacuum-separated 
metallic or dielectric geometries. Two electrically neutral spatially 
separated systems interacting via Casimir force will have access 
to the stable separation state only when the force transitions from 
repulsive at small separations to attractive at large separations. 
Such issues are important in the future development of micro- 
and nano-electromechanical systems (MEMS and NEMS). We 
investigate here the Casimir-Polder free energy corresponding 
to interactions of a magnetically and electrically polarizable 
micro-particle with a magneto-dielectric sheet. Our theoretical 
study shows that such an interaction is tunable in strength and 
sign.The latter, particularly, is true provided we go beyond the 
natural materials and look for the meta-materials fabricated 
at scales between the micron and the nanometer. We assume 
that the particle and the sheet have access to non-tivial values 
of the polarizability ratio and the electromagnetic impedance, 
respectively. The crossover between attractive and repulsive 
behavior is found to depend on these quantities.

Keywords: Casimir effect, Vacuum-separated metallic 
geometry, MEMS and NEMS, Casimir-Polder free energy, 
Magneto-dielectric sheet, Non trivial magnetic susceptibility, 
Electromagnetic impedance.
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The mutual electromagnetic correlation between two spatially 
separated systems gives rise to Casimir/ Casmir-Polder effect. 
The corresponding forces, which are generally attractive for most 
vacuum-separated metallic or dielectric geometries, are due to 
the contribution to the ground-state [1,2] energy of the coupled 
system. The repulsive Casimir forces [3] are believed to occur 
in four types of materials, viz. the fluid-separated dielectrics [4], 
the composite meta-materials [5], the systems with different 
geometries [6,7], and the time-reversal symmetry (TRS)
broken systems [8,9]. It is well-known [10,11.12] that the Weyl 
semimetal state−a novel topological phase of matter−must break 
TRS or the inversion symmetry. Therefore, the corresponding 
host materials are expected to yield a Casimir/Casimir-Polder 

(CP) repulsion tunable with carrier doping or a magnetic field 
[13]. Experimentally, the forces have been realized for the 
first time involving test bodies immersed in a liquid medium- 
ethanol [4]. We investigate here the Casimir-Polder free energy 
corresponding to interactions of an electrically and magnetically 
polarizable micro-particle with a magneto-dielectric sheet. Our 
task is to look for the repulsive Casimir-Polder forces between 
a micro-particle possessing non trivial ratio of the magnetic 
polarizability and the electric polarizability and the artificially 
engineered dielectric material (meta-material) sheet having non 
trivial magnetic permeability values, as the natural materials 
have a magnetic permeability roughly equal to one in the 
range of frequencies relevant for the Casimir effect. The natural 
materials, such as ferrites and garnets, are perhaps suitable 
to demonstrate the repulsive Casimir force as they have high 
permeability. We show that for non-trivial permeability values, 
the crossover between attractive and repulsive behavior depends 
on ‘polarizability ratio’ of the micro-particle, and the impedance 
Z = √(μ/ε) of the sheet apart from the ratio of the film thickness 
and the micro-particle separation (D/d) and temperature(T). The 
importance of CP repulsion cannot be understated. The repulsion 
stabilizes the operation of MEMS and NEMS, as it liberates one 
from the badgering problem of ‘stiction’ in such systems. 

We consider a micro-particle in an intervening medium 
characterized by the dynamic electric polarizability ηe(ω) and 
the dynamic magnetic polarizability ηm(ω) as shown in Figure 
1. The static electric and magnetic polarizabilities of the micro-
particle are ηe(0) and ηm(0),respec-tively. We wish to discuss 
first the Casimir-Polder interaction in the static limit. We define 
their ratio as r(0) = √( ηm(0)/ ηe(0)). The quantities ε(0)(ω) and 
μ(0)(ω) are the dynamic dielectric permittivity and the dynamic 
magnetic permeability of the intervening medium. If the medium 
happens to be vacuum and then each of them is equal to one. The 
sample in the figure consists of a thin magneto-dielectric film 
of thickness ‘D’ deposited on a thick substrate at temperature T. 
Suppose the film is characterized by the dielectric permittivity 
ε(1)(ω) and the magnetic permeability μ(1)(ω), and the substrate 
is by the permittivity ε(2)(ω) and the permeability μ(2)(ω). These 



Mater. Sci. Eng. Adv. Res 1(2).  Page | 27

Citation: Partha Goswami (2015) Casimir-Polder Repulsive Interaction. Mater. Sci. Eng. Adv. Res 1(2): 26-35. doi: https://doi.org/10.24218/
msear.2015.10.

might be made of either conducting or poorly conducting 
materials. Also, for the film material there exist finite limiting 
values ε(1)(0) ≡ 0ε(1) and μ(1)(0) ≡ μ(1). The finite limiting values 
of these quantities for the substrate are ε (

 
2) and μ (2). These static 

values are the values of the Faraday-Maxwell dielectric constant 
and permeability. For the fields slowly varying in space and time, 
such limiting values of the function ε(1)(ω) and μ(1)(ω) exist. Our 
first aim is to investigate the interaction of the micro-particle 
with the magneto-dielectric sheet in this limit, ignoring the 
frequency dependence completely. Suppose now the particle is 
at a separation ‘d’ (d >> d(T)  ħc/(2πkBT)) above the sample. We 
further assume (k+)max ~ d−1, where the wave vector projection 
on the (x,y) plane is k+. This yields k+ << (2πkBT)/ ħc. One can 
also express the ensuing condition as T >> Tc ħc /(2π dkB). This is 
the high-temperature limit. Our second aim is to investigate the 
micro-particle-sheet interaction in the high-temperature and the 
moderately high-temperature limits. 

To elucidate ab initio the concept of the classical Casimir-Polder 
interaction (CPI),say, on the basis of the Lifshitz theory [1,3,14], 
we assume the interaction of the particle with the sheet to be 
of the classical CPI type in the first approximation. The classical 
case is valid under the large-separation assumption d >> d(T)  
ħc/(2πkBT). The quantities d(T) (and Tc )set the classical limit in 
the sense that the limit starts from d ≈ 5 d(T) and T ≈ 5Tc. For 
ordinary materials at temperature T, one may write a characteristic 
separation d(T) = ħc/(2πkBT) originating from the characteristic 
mode frequency ωl=1 = 2π kBT/ħ = c/d(T). The classical limit 
occurs when d>> d(T). At room temperature 300 K, d(T)~ 1μm. 
So, the classical limit is achieved at separations d >> 1 μm. A 
different way of looking at this issue is in terms of temperature. 
For the separation d = 10 μm, the classical limit edge is Tc ≈ 20 
K. Thus, at T >> Tc ≈ 20 K, say, at room temperature T = 300 K, 
the classical limit is most definitely achieved. The characteristic 
thermal mode frequency in this situation is 1013 Hz. 

We denote the reflection coefficients of the electromagnetic 
fluctuations on the sheet material plus substrate, dependent 
on the wave vector projection k+ on the (x,y) plane (and 
also on the frequency), for two independent modes, viz. the 
transverse magnetic (TM) and the transverse electric (TE) 
polarizations,by(iωl , k

+), and(iωl , k
+),respectively. Here ωl = (2π 

lkB T/ħ) are (imaginary) Matsubara frequencies. The dependence 
on‘ωl‘ is borne out by the fact that the Casimir/ Casimir-Polder 
force not only arises from the fluctuations of the electromagnetic 
field, which are purely quantum-mechanical objects, they also 
have a thermal contribution [1,18] at nonzero temperatures. The 
closed-form, precise expressions for these reflection coefficients, 
including the thermal contribution, are given by the Fresnel 
coefficients(iωl,k

+) , and(iωl ,k+) ([15,16,17]) (the Fresnel 
coefficients are calculated along the imaginary axis ([15,16,17]) 
corresponding to the reflection on the boundary planes between 
the vacuum and the film material (n = 0, n` = 1) and also between 
the film material and the substrate (n=1, n` =2):

Here, the indices α,β=(m, e) denote the transverse magnetic 
(TM) and the transverse electric (TE) modes. The Fresnel 
coefficients, which describe the reflection and transmission of 
electromagnetic waves at an interface, are given by    

=tan(π/4−(iωl, k
+)), (2)

Figure 1: The configuration of a micro-particle in vacuum characterized by the electric polarizability 
ηe(ω)and the magnetic polarizability ηm(ω) at a distance ‘d’ above a  sample  consisting of thin  sheet 
of thickness ‘D’ deposited on a thick substrate. While the sheet is characterized by the dielectric 
permittivity ε(1)(ω) and the magnetic permeability μ(1)(ω), the substrate is by the permittivity ε(2)(ω) 
and the permeability μ(2)(ω). We have chosen the coordinate plane (x, y) coinciding with the upper 
sheet surface and the z axis perpendicular to it.

(1)
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=tan(π/4 − (iωl, k
┴)),   (3)  

   where     

(iωl, k
+) = arctan[( ε(n)(iωl) k

(n` )(iωl, k
+))/ ( ε( n`) iωl) k

(n )(iωl, k
+))],      (4)

      (iωl, k
+) = arctan [(μ(n)(iωl) k

(n` )(iωl, k
+))/ ( μ( n`) iωl) k

(n )(iωl, k
+))],              (5)       

       k(n)(iωl, k
+) = [k+ 2 + ε(n)(iωl) μ

(n)(iωl)(ωl
2/c2)]1/2. (6)

The reflection coefficients(iωl,k+) of the electromagnetic fluctua-
tions on the sheet material plus substrate in view of Eqs.(2)-(5), 
for the transverse magnetic (TM) polarization, could be written 
as

For the transverse electric (TE) polarization, one may similarly 
write

where we have introduced a dimensionless variable in place of k+ 
above, viz. k ≡ 2d k+. In view of Eqs. (7) and (8), one obtains the 
simple expression for the Casimir-Polder free energy density as 

The dielectric constant ε(n)(iωl),the electric polarizability ηe (iωl 
),etc. though written as function of frequency above, in general, 
is a function of frequency and the wavevector both. They descibe 
the response of a medium to any field. As alrady mentioned, for 
the fields slowly varying in space and time, the limiting value 
of these functions are the Faraday-Maxwell dielectric constant 
and the static electric polarizability ηe (0 ). We shall assume the 
magnetic polarizability of the micro-particle and the permeability 
of the sheet material having the similar limiting static values 
below.

The important outcome, of the Faraday-Maxwell (static) limit, 
is that k(n)(iωl, k+) = k+. In view of (2) and (3) one is then able to 
write

The summation Σl in (9) disappears in this static limit. It must be 
clarified that this limit is not the same as the low-temperature limit 
where ωl `s will get closer to each other and at zero temperature 

all of them contribute to dissipation. Thus, the Casimir-Polder 
free energy assumes the simpler form F(T,…. )= − , where

 ,

The replacements    , for the analysis purpose, enable us to write 
the Casimir-Polder force as

This is the formal expression of the Casimir-Polder force 
corresponding to interactions of an electrically and magnetically 
polarizable microparticle with a magneto-dielectric sheet. Here 
the impedance of the sheet is Z(1) = √( μ (1)/ ε (1)) where (μ (1), ε (1)) 
are the the magnetic permeability and the dielectric permittivity 
of the film material, respectively. Similarly, the polarizability 
ratio of the micro-particle in vacuum is r(0) = √( ηm(0)/ ηe(0)) 
where ηm(0) and ηe (0),respectively, are the static magnetic and 
the electric polarizability of the micro-particle in vacuum. Note 
that the Casimir/ Casimir-Polder force arises from fluctuations 
of the electromagnetic field which are purely quantum-
mechanical objects. At nonzero temperatures, the fluctuations 
also have a thermal contribution [1,18]. In our approximation 
of ignoring the frequency dependence completely, a significant 
physical information is lost: The formula (9) is written in terms 
of the imaginary frequencies though it has a representation in 
the real frequency domain as well [19,20]. The latter enables one 
to analyze the contributions from propagating and evanescent 
waves separately. At small distance the repulsive evanescent con-
tributions are found to be dominating for the transverse electric 
polarization in the case of metallic objects [20]. Therefore, the 
thermal contributions need to be taken into account to discuss 
the Casimir-Polder repulsion. Furthermore, if the film happens 
to be isolated, then ε(2)(0) and μ(2)(0) = 1. All these restrictions 
enable us to write

We can obtain, in principle, the Casimir-Polder energy by 
evaluating the integral(11) considering the terms in the integrand 
when D/d << 1. The limit D/d >> 1 does not make sense. In the 
limit D/d << 1 , to the leading order, the Casimir-Polder force is 

(7)

(8)

(9) 

(10)

(11)

(12)

(13)

(13)

(10)
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given by 
Ќ(d,T, Z(1), r(0) ) = − (3kBT Д(ε(1), Z (1) r(0))D/4d5) , Д (ε(1), Z (1) r(0))= (ηe(0)ε(1)){ (1+ 
Z (1) 2 r(0) 2 −( Z (1) 2 + r(0) 2 / ε(1)2 Z (1)2)}.              (16) 

This is the Casimir-Polder force in the relatively large-separation 
limit. For dielectric film with no magnetic properties, the Casimir-
Polder free energy and force are obtained from expressions for 
F(d,T) and Ќ(d,T), respectively, by putting μ0

(1) = 1. This force is 
generally attractive. The attractive nature in the large-separation 
limit is expected as the force has deep connection with the van 
der Waals force. 

We use an alternative definition of the exponential function, viz.

eZ = Limn→∞(1+(     ))n where the convergence is uniform in 
|z|≤R <∞ for every R, to expand e- κD/d  in (11) The uniform 
convergence implies that the term-by-term integration in the 
expansion is possible. In view of this and Eq. (15),the Casimir-
Polder free energy assumes the simple form F(d,,...T ) = 

where the summand is 

We are putting in place all the relevant results with the aim to 
show that the repulsive forces arise in magnetic materials with 
non-trivial response functions [21,22]. As it has already been 
mentioned that they also arise for fluid-separated geometries [4], 
magneto-electric materials [5, 23], and the TRS broken materials 
[10,11,12,13].

The Casimir-Polder free energy F(d,T, Z(1), ....) could also be 
written as F(d,T, Z(1), ....) = −((kB T)/(8d3)) f(d,Z(1), ηm (0),…), 
where 

,                         
the superscript '(0)' stands for the zero frequency limit. The 
quantities given by Eq.(15). The term-by-term integration of 

and a little algebra , eventually yield F(d,T,Z(1), ηm (0),… ) = −((kB 
T)/(8d3 )) f(d, Z(1), ηm (0),…), where 

It may be noted that the contributions to in, say, (19) arises 
from the exponential terms and not from So, the term-by-term 
integrations are not very cumbersome. Eq.(19) immediately 
yields the Casimir-Polder force as Ќ(d,T, ε(1), Z(1),r(0)) =−(kBT 
/8d4) g (d, ε(1), Z(1), r(0) )  where

Upon expanding (20), a little rearrangement of terms enables us 
to write 

where r(0) = √( ηm(0)/ ηe(0)) and Ĩ1 (D/d) and Ĩ2 (D/d)  and  are 
the two slowly convergent series: 

Ĩ1 (D/d)=[1- 6(D/d)+(49/2) (D/d)2-…] ,

Ĩ2 (D/d)=[1- (5/2)(D/d)+5(D/d)2-(35/4) (D/d)3+...]. 

The other quantities, viz.  , are defined in 
Eq.(15):

The undefined ones are (ae, am). These are 
given by  and 

 One immediately obtains 
a criterion for the attractive Casimir-Polder interaction to turn 
repulsive. As long as we have 

(23a)

the function g(d,) is greater than zero, and therefore the force is 
attractive. When

the force turns repulsive as g(d, ε(1), Z(1), r(0)) < 0. Our calculation 
above pertains to the Faraday-Maxwell (static) limit, where the 
frequency dependence of all functions are ignored completely, 
resulting in the appearence of the conditions (23) above. 
Furthermore, it is being hoped, notwithstanding the fact that 
the in-depth investigation of the present problem requires 
dealing with a quantum-mechanical description, that our 

z
n

(17)

(18)

(19)

(20)

(21a)

(21b)Ѯ᷿צ

(22)

(23b)
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semi-phenomeological approach with the Stoner-like criterion 
enshrined in (23) for the attraction-repulsion crossover, will 
generate interest among the Casimir Physics community to cast a 
fresh look to the problem. We shall now investigate the Casimir-
Polder interaction in the high-temperature limit.We shall also 
take the Matsubara frequency ωl= 2π lkBT/ħ dependence in an 
approximate manner at a comparatively lower temperature. 

In the high temperature (or, the large seperation) regime, the 
long time behavior of the ubiquitous dissipation is dominated 
by an exponential decay with a time constant given by the first 
Matsubara frequency ω1= 2πkBT/ħ. At a given temperature 'T ' 
for the micro-particle–sheet system, it is then desirable that ω1  
for the large seperation limit and ω1  , but not much higher, for 
comparatively moderate separations. This simply implies that T 
>> Tc ħc /(2π dkB) and T ≥ Tc ,respectively, for the former and the 
latter cases. The important outcome, unlike the Faraday-Maxwell 
(static) limit, is that in the high-temperature limit k(n)(iωl, k

+) ≈ 
k(n)(iωl,0) = [ε(n)(iωl) μ(n)(iωl)(ωl

2/c2)]1/2 ≈ (ε(n)(0) μ(n)(0))1/2(ω1/c), 
and for the comparatively moderate temperatures 

k(n)(iωl, k
+) ≈ (ε(n)(0) μ(n)(0))1/2(ω1/c)[1+ (k+2/(ε(n)(0) μ(n)(0) (ω1/c)2)]1/2 

≈ (ε(n)(0) μ(n)(0))1/2 (ω1/c) [ 1+ (k+2/2(ε(n)(0) μ(n)(0) (ω1/c)2)].                (24)

It is easy to see that, for the former case, the criterion for the attractive 
Casimir-Polder interaction to turn repulsive is formally given 
by Eq.(23). Only the quantities, such as 
are not defined anymore by Eq.(22). These are rather given by 

and ; have been put to one above. The superscript 'hTl' stands 
for the high-temperature limit. Strictly speaking, we shall have 
to consider the frequency (ω) dependences of the permeability 
(μ) and the permi-ttivity (ε) of the sheet material as well, for 
all information about the optical properties of the surface is 
encoded in these response functions. In the final leg of this article, 
we shall take up this issue. We emphasize that, as long as the 
frequency dependence of the response functions are ignored, the 
crucial result, when the frequency dependendence is completely 
ignored, given by Eq. (23) is not formally different from the high-
temperature limit result. 

For the not-so-high temperatures case, we shall have

 (25)

        (26)

where n(1)2 = ε(1) μ(1) = ε(1)2 Z(1)2. The temperature lowering can lead 
to a complete cancellation or the change of sign of the micro-
particle–sheet interaction. We note that now the contributions 
to κ-integration in, say, Eq.(17) arise from the exponential term 
e- κD/d, as well as from  So, the term-
by-term integrations and overall calculations will be a little more 
cumbersome. We wish to continue below together with the 
expansions, of  in (25) and (26), under the moderately 
high temperature assumption reflected in the inequality κ2/(a02 
(T)<< 1 The problem is tractable under this assumption. The 
expansions are 

    (27)

           (28)

             (29)

 (30)

 (31) 

Using Eqs.(28)-(31), we find that for the comparatively moderate 
temperatures, the formal free energy expression could be written 
as

(32)

 where 

(33)

We have used (17),(28)-(31) in Eq.(33).In the expansion in (33) 
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we do not consider the terms of O(order higher than what we 
have shown. The various terms in (33) are given by

 (34)

With | cβ |, | dβ |<< 1, one may approximate the second term in 
(33) as 

          (35) 

Upon integration, the term within parentheses yields 120 [1+3

Since we are not considering the low temperature limit, we may 
replace ωl by ω1= 2πkBT/ħ in the integral f . We then have

    (36)   

       (37)   

The first term in the series (33) above is

 This is given by Eq.(18) albeit 
with a slight difference in the definition of . The 
functions  are now given by (36) and (37). The 
second term in the series (33) above is given by (35). Thus the 
function f(.,d,T, ε(1),..) is given by

(38)     

The significant difference between (19) and (38) is as follows: 
While all the cefficients in (19) are temperature independent, 
iobvious from (38) that,though the coefficients of (D/d)m  
(m=0,1,2) will be temperature independent, the remaining ones 
will be temperature dependent due to the function 
. Owing to the presence of the last term in Eq.(38), it is not 
difficult to see that the correction to g(d,ε(1), Z(1), r(0) ) in Eq.(20) 
, involving the same function, is

          (39)

With this correction,as in (23), we immediately find that as long 
as we have 

(40)

the force is attractive. When

          (41)

the force turns repulsive. Inequations (40) and (41) reduce to 
(23), as they should, when ((2Dω1)/c)-2 << 1(high-temperature 
limit) Here

 (42)

          (43)

We notice that the Casimir-Polder(CP) force not only arises from 
the reflection coefficients of the electromagnetic fluctuations 
on the sheet material plus substrate, there is also thermal 
contribution [1,18]. The contribution is through the dependence 
on the Matsubara frequencies.

We shall do some graphics now to see what does inequation 
(23) convey. Analyzing the high temperature and the moderate 
temperature conterparts of (23) one may not gain probably a 
very different insight compared to what could be obtained from 
it. Therefore, the analysis of these results are not in the agenda at 
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the moment. The term within the parenthesis in the right-hand-
side of (21a) is F (d, ε(1), Z(1), r(0) ) ≡ { pĨ2 (D/d)- ((D/d) Ĩ1 (D/d))}. 
Upon expanding upto the fifth order, we find that F (d, ε(1), Z(1), 
r(0) ) is a quintic in (D/d): 

 (44)

Thus, the criterion (23) could now be expressed as if F (d, ε(1), 
Z(1), r(0)) is greater (less) than zero, the Casimir-Polder 
interaction is attractive(repulsive).To set the tone and the tenor 
of the discussion, we investigate the situation first with the aid 
of Eq.(16). We suppose that the film materials have access to 
non-trivial permeability and permittivity. The force could then 
be repulsive as well as we see below. We have plotted Д(ε(1), Z(1), 
r(0)) as a function of  Z(1) for ε(1) = 14, and r(0) = 0.20(curve1), 
0.30(curve2), 0.40(curve3), and 0.50(curve4) in Figure 2 (In 
Figure 2, r(0) has been indicated by Z2). The curves are recliner-
shaped. The bend of the recliners, where Ќ(d,T, Z(1), r(0) ) = 
−(3kBT/4D4) (D/d)5, shifts towards left as r(0) decreases. We 
find that the force is generally attractive except at near-extreme 
values of Z(1) (~0.05)  and the polarizability ratio r(0) (~0.40 
-0.50). The values indicate that, if the micro-particle has higher 
polarizability ratio compared to the magnetic response and the 
electric response ratio of the sheet, the repulsion is accessible. 

For the 2D graphics, we have assumed ε(1) = 14, Z(1) = 0.5 and 
1.00, and r(0) ≡ √( ηm(0)/ ηe(0)) = (01, 02, 03, 04). With (ε(0) , 
μ(0), ε(2), μ(2), ηe(0)) =1, we depict the crucial part of the Casimir-
Polder interaction, viz. the function F (d, ε(1), Z(1), r(0), ω=0) in 
the static limit. We have approximated it by a quintic in (D/d).  
In figure 3(a)( ε(1) ) = 14, Z(1) = 0.5, and r(0) = (01, 02, 03, 04) ), 
we find that interaction is attractive as long as (D/d) ≥ 0.2, or, d≥ 
5 D. For (D/d)  > 0.2 (or, d < 5 D), the interaction is repulsive, 
while in figure 3(b)( ε(1)) = 14, Z(1) =1.00, and r(0) = (01, 02, 03, 
04) ), we find that interaction is attractive as long as (D/d) ≥0.1,

Figure 2: A plot of Casimir-Polder force (Д(ε(1), Z(1), r(0))) as a function 
of Z(1) for ε(1) = 14, and r(0) = 0.20(curve1), 0.30(curve2), 0.40(curve3), 
and 0.50(curve4) in the relatively large-separation limit. The force is  
generally attractive except at non-trivial values of Z(1) (~0.05)and r(0)
(~0.40 - 0.50).

or, d≥ 10D. For (D/d)  > 0.1 (or, d< 10 D), the interaction is 
repulsive. The results ( repulsion at smaller separation (d/D)~1 
and the attraction at larger separation ) depicted in Figure 3 were 
expected as the Casimir-Polder/Casimir forces are very closely 
linked with the van der Waals force. Additionally, we notice 
that, for the repulsion purpose, the sheet material is relatively 
high in the magnetic response (and the micro-particle has low 
magnetic polarizability). Generally, it is known [24,25] that for 
this purpose one requires a magnetic response strong enough to 
dominate the electric response of the material in a broad range 
of frequencies. Since this stringent condition is not met by any 
natural material, there has been a quest for an artificial material 
whose properties could be tailored in this direction.

As regards the 3D graphics, we have taken non-trivial values of 
the parameters. The sheet used for obtaining Figure 4 may be 
termed as a moderate dielectric  = 14), for obtaining Figure 5 as 
a poor dielectric (ε(1) = 1.25), and for Figure 6 as a good dielectric 
ε(1) = 36.8). The polarizability ratio r(0) = √( ηm(0)/ ηe(0)) is 20.00. 
A'spot of vulnerability' appears at Z(1) < 1 for  d≥ 4 D 4, where 
the repulsion suddenly changes to attraction followed by a swift 
comeback. This spot wanes off at ε(1) > 37. Furthermore, as shown 
in Figure 7, there are contour plots of the quintic F as a function 
of the polarizability ratio r(0) and Z(1). In Figure 7(a), for example, 
with the dielectric function value ε(1)= 1.26 (poor dielectric), 
and  (D/d) =2 or d = D/2  ( i.e, the meta-material sheet and the 
micro-particle separation d ~ D) , we find that the quintic, F < 0 
(repulsive). At Z(1)~1.5 a sudden increase in the magnitude of 'F' 
occurs. In Figure 7(b), on the other hand, the dielectric function 
ε(1)= 25.26(good dielectric), and (D/d) =0.10 or d = 10D ( i.e, 
the micro-particle and the meta-material sheet are separated 
by a large distance d >> D) , F < 0 (repulsive). At Z(1)~0.5 a 
sudden change in 'F' occurs; it becomes positive(attractive). The 
numbers above are artefacts of the approximation made. The 
facts enlisted, however, indicate that the tale of metamaterials 
have some ingredients where the strange and bizarre is blurred 
beyond clarity.

On a quick side note, the frequency (ω) dependences of the 
permeability (μ) and the permittivity (ε) of the sheet material 
must be taken into consideration, for all information about the 
optical properties of the surface is encoded in these response 
functions. We may consider the possibility of the sheet material 
as a metal. The metals are good conductors but not good 
dielectrics; the non-local effects are not important for the metal. 
At optical frequencies (ω~1015Hz.), the metallic conductivity is 
σ ~ 108 Ω−1-m−1, ε(ω) ~ ε0 ~10−11 SI unit, and μ ~ μ0 ~10−6 SI unit. 
These ensure that (ωε(ω)/σ) << 1 typically valid for all metals. 
As the interaction between the surface plasmon resonances 
contribute to the Casimir energy, one may adopt the lossy Drude 
model expression [26] for the permittivity of metal: ε(ω)/ε0 = [1 
− ωp

2/(ω2+iωγ) ] . Here ωp= √(Ne2/mε0) is the plasma frequency, 
N is the number density of electrons, and γ is the dissipation 
constant. Upon focussing only on the weak-absorption case ( 
γ→0), one finds that the imaginary part of ε(ω) appear as a delta 
function. The calculation of the Casimir force requires response 
functions at imaginary frequencies. We use the Kramers-Kronig 
relation : ε(iωl)/ ε0 =[1+ (2/π) ]. The relation 
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gives ε(iωl)/ε0=[1+(2/π) (ωp
2/ ( ωl 

2)]. Here ωl = (2πlkBT/ħ) are 
(imaginary) Matsubara frequencies.The non-local effects are, 
however, important for the poor conductors.The permittivity 
expression [26] of such materials is given by ε(iωl, k)/ε0= 1+ (α 
ωp

2/(vk ωl)) where vk Landau damping frequency, and α = 3π/4. 
In the similar manner one may write the lossy Drude model 
expression [26] for the permeability μ(ω) /μ0= 1+ { f ω2/( ω0

2− 
ω2−iκ ω)}, 0 < f < 1 , with focus on the case with constant κ →0. The 
response function μ(ω) at imaginary frequencies is given by the 
Kramers-Kronig relation. We find μ(iωl) / μ0 = [1 +(2/π)( ωpm

2/
(ωl 

2)] where the magnetic counterpart of the plasma frequency 
is ωpm = ω0 √f . Our analysis above have already indicated that for 
accessing the CP repulsion one needs to have the overwhelming 
magnetic response in the material under consideration compared 
to the electric response. In order to give Eq.(23) – the key result 

Figure 3: The 2D plots of thequinticF (d,...,r(0))as a function of  (D/d);  the remaining parameters are held fixed. (a) Here we have taken ε(1)=14, 
Z(1)=0.5,r(0) =  (01, 02, 03, 04).The quintic function is positive, i.e. the Casimir-Polder interaction is attractive as long as  (D/d) < 0.2, or, d ≥ 5 D. 
For (D/d)> 0.2 (or, d < 5D), the interaction is repulsive.(b) Here . Z(1)= 1.00. The Casimir-Polder interaction is attractive as long as (D/d) < 0.1.

a) b)

Figure 4: A contour plot of the quintic function F as a function of  (D/d) 
and Z(1) is shown here. The dielectric constant of the sheet material 
ε(1)= 14 (a moderate dielectric).  The polarizability ratio r(0) = √( ηm(0)/ 
ηe(0))= 20.00. An 'Achilles' heel' (a spot of vulnerability) appears for d 
<4 D as Z(1) is increased from zero. At Z(1) ≈0.25  the repulsion suddenly 
changes to attraction followed by a swift comeback. Figure 5: A contour plot of the quintic function F as a function of  (D/d) 

and Z(1) is shown here. The dielectric constant of the sheet material 
ε(1) = 1.25 (a poor dielectric).  The polarizability ratio r(0) = √( ηm(0)/ 
ηe(0))= 20.00. An 'Achilles' heel' (a spot of vulnerability) appears for   
d≥ 4 D  as Z(1) is increased from zero. At Z(1) ≈0.85 here the repulsion 
suddenly changes to attraction followed by a swift comeback.

Figure 6: A contour plot of the quintic function F as a function 
of  (D/d)and Z(1) is shown here. The dielectric constant of the sheet 
material ε(1) = 36.80.  The sheet may be termed as a good dielectric. 
The polarizability ratio r(0) = √( ηm(0)/ ηe(0))= 20.00.  The 'Achilles' 
heel' (where the repulsion suddenly changes to attraction followed 
by a swift comeback) appears  to be waning at Z(1) ≈0.20 and d≥ D.
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of the paper − a comprehensive look, it is therefore necessary to 
include the frequency dependences of μ and ε in the theory.

We have developed here a semi-phenomenological approach 
for the CP repulsion problem and obtained a Stoner-like 
criterion given by Eq.(23) for the attraction-repulsion crossover, 
notwithstanding the fact that the comprehensive investigation of 
the present problem requires dealing with a quantum-mechanical 
description. The graphical representations reveal that a strong 
magnetic response must dominate over the electric response of 
the material under investigation in a broad range of frequencies 
for the CP repulsion to become a reality. The prediction regarding 
artificial materials, such as the meta-materials [24,25] (MM) and 
the chiral meta-materials [27,28](CMM), with tunable magneto-
dielectric properties fuelled the hope of realizing the Casimir/CP 
repulsion and nano-levitation effect on demand in the second 
half of the last decade. The quest for the exotic material capable 
to deliver the Casimir/CP repulsion appeared to have been met 
with initial success. The existence of a repulsive Casimir force 
was found to depend upon the strength of the chirality(σ ) 
[27,28]. It must be mentioned that the MMs are basically made 
of nanostructures carefully fabricated to access a particular 
electromagnetic feature. For instance, the simultaneous 
occurance of the negative values for the permittivity and the 
permeability is the requirement that yields a ‘left-handed’ 
medium in which light propagates with opposite phase and 
energy velocities--a condition described by a negative refractive 
index in the electromagnetic domain. The CMMs, on the other 
hand, are separate class of MMs where the refractive index n = 
√( μr εr) ± σ where σ 0. The hope, however, was dashed as the very 
conjecture of accesssing the repulsive Casimir effect based on 
the CMMs was adjudged to be doubtful [29]. The reason shown 
by the authors [29] is that the proposal is irreconcilable with 
the causality and the passivity of the meta-materials. This had 
perhaps pushed the investigation trail back to the initial step. The 
recent developments in nano-fabrication/ design procedure of 
MMs [30, 31] with specially tailored magneto-electric properties, 

however, have resulted in the regeneration of hope in the field 
on investigation of dispersion forces in the presence of MMs.
Future theoretical work should focus on a quantum-mechanical 
description of the micro-particle and the exotic material sheet 
system, compatible with the causality and the passivity of the 
material, to tune up the condition for the attraction-repulsion 
crossover.

Figure 7:  (a) A contour plot of the quintic F as a function of  the polarizability ratio r(0) and Z(1).  With the dielectric function value ε(1)= 1.26 
(poor dielectric), and  (D/d) =2 or d=D/2 ( i.e, the micro-particle possessing non trivial polarizability ratio and the meta-material sheet  are very 
close) , we find  that the quintic, F < 0 (Repulsive). At Z(1) ~1.5, a sudden increase in the magnitude of 'F' occurs. (b) A contour plot of the quintic 
F as a function of r(0) and Z(1). The dielectric function ε(1)= 25.26 (good dielectric), and  (D/d) =0.10 or d=10 D  ( i.e, the micro-particle possessing 
non trivial polarizability ratio and the meta-material sheet are separated by a large distance ) , F < 0 (Repulsive). At Z(1 )~ 0.5, a sudden change 
in 'F' occurs. It becomes positive(Attractive).
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