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Abstract
Nano-bio-technology is one of the most important mainstreams 
of current world research; improvements in creation and 
increase of nano-devices performance are a primary objective 
of pure research and applied technology. The devices sensitivity 
is an essential characteristic, for determining a great increase of 
their quality; various ideas and techniques are considered in this 
direction. A new appeared theoretical analytical model for the 
study of transport dynamics is able to accommodate previously 
not completely understood behaviours and indicates precise 
ways for calibrate and improve the device performance.

Keywords: Nano-technology, Nano-bio-materials, Nano-bio-
devices, Diffusion, Sensitivity, Analytical Modelling, Mathemati-
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In last years the increased ability to manipulate matter, combined 
with advances and discoveries in the synthesis and assembly 
of structures at nanoscale, brought to interesting advances in 
scientific and technological areas. For explaining the nanoscale 
phenomena, a deep understanding of electronic, magnetic and 
photonic interactions at this size scale is desiderable, through 
experiments, theory and mathematical modelling [1,2].

Nanomaterial-based devices are a powerful class of ultrasensitive 
devices for direct utilization at biological, chemical, medical, 
environmental level, in many areas of healthcare and life 
sciences. Considered the strong current demand of increasingly 
compact and powerful systems, there is a great interest in the 
development of nanoscale devices with new functions and 
enhanced performance. Central for this realization is the rational 
control of key nanomaterial parameters, determining electronic 
and optoelectronic properties [3-7].

Recently it has appeared a new generalization of the Drude-
Lorentz model, based on the complete Fourier transform of 
the frequency-dependent complex conductivity )(ωσ  of the 
system, which presents analytical expressions for the most 
important quantities related to transport phenomena, i.e. the 
velocities correlation function Tvtv >⋅< )0()(



 at the temperature 
T, the mean squared deviation of position 22 )]0()([)( RtRtR



−=  
and the diffusion coefficient D [8]. It avoids time-consuming 
numerical and/or simulation procedures, is mathematically very 
elegant and useful both for the study of new devices with desired 
characteristics and for testing and/or obtaining new

values by existing experimental data. It considers also quantum 
[9] and relativistic [10] effects, the quantum relativistic step is 
in progress [11]. The comparison with existing utilized models, 
as Drude-Lorentz and Smith models [12] and the utilization of 
existing experimental data have demonstrated a very good fit 
with current knowledge [13-19] (Figure 1). 

The peculiarities of its mathematical structure are giving also 
interesting informations about previsions of new behaviours at 
nanoscale [20-22] (Figure 2).

The sensitivity of a nano-bio-device is connected to the increase 
and rapidity of detection, i.e. to the charge transport inside a 
device and therefore to the values and variations of its diffusion.

The quantum and relativistic diffusion coefficients D present the 
following analytical expressions respectively: 
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Figure 1: Diffusion behaviour vs time for some values of 
Iα  (see 

text) as prediction of the model. Dots are experimental data from 
THz spectroscopy [23], with distribution represented by error bars

Figure 2: Initial oscillation in diffusion, appeared using the quantum 
version and considering data from literature [24]
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with Bk  the Boltzmann’s constant, T the temperature of the 
system, m0 and m* rest and effective mass respectively, iτ  and 

iω  relaxation time and frequency of the i-th state respectively, 
0ω  center frequency, ⊂∈ )1,0(Iα

R
 parameter of the model with 

the following definitions:

  2241 iiIi ωτα −=                                                                           (3)

22
041 τωγα −=

relI
                                                                         (4)

with 211 βγ −= , cv=β , 2221 γγβρ =+=  [9,10]. The model 
contains also another parameter Rα ∈

R+, which keeps into 
account of damped oscillating behaviour of diffusion, and 
it works from sub-pico-level to macro-level. Current results 
concern the nano-level.        

Many variables can influence the diffusion and therefore the 
sensitivity of a nano-bio-device; considering Eqs. (1) and (2):

1) the temperature T of the system;

2) the parameter ),( iiII ωταα = , i.e. the values of iτ  and iω ;

3) the variation of the effective mass m*, linked to the physical 
and chemical treatments on materials, like doping [25,26];

4) the variations of the chiral vector inscribed in (n,m) indices 
[27];

5) the quantum weights of each mode and the variation of 
carrier density N [9];

6) the possibility to vary the initial peak in diffusion and the 
value of diffusion in time through a modulation of the carriers 
velocity [10]. 

In conclusion, being the diffusion strictly connected to the 
sensitivity and therefore to the performance of nano-bio-
devices, it is possible to determine the peculiar characteristics 
of a nanomaterial-based device, considering parameters such 
as the temperature of the system, the variation of the effective 
mass, frequencies and relaxation times, weights of each mode, 
variation of carrier density, the possibility to relativistic-like 
carriers velocities for ultrashort times. The new predictions 
could be properly confirmed considering powerful experimental 
time-resolved techniques, like TRTS [28-33]. 
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