

Chemistry of Compounds Journal

Benzomorphan Skeleton as Scaffold for Analgesic, Antiviral and Antitumoral drugs

Rita Turnaturi^{*} and Lorella Pasquinucci

Department of Drug Sciences, Medicinal Chemistry Section, University of Catania

*Corresponding author: Rita Turnaturi, Department of Drug Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; Tel: +39-0957384017; E mail: rita.turnaturi@tiscali.it

Article Type: Short Communication, Submission Date: 26 August 2016, Accepted Date: 19 September 2016, Published Date: 27 October 2016.

Citation: Rita Turnaturi and Lorella Pasquinucci (2016) Benzomorphan Skeleton as Scaffold for Analgesic, Antiviral and Antitumoral drugs. Chemi.Compol. J 1(1): 6-7.

Copyright: © **2016** Rita Turnaturi and Lorella Pasquinucci. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Benzomorphan core is a versatile structure. In fact, it represented the skeleton of drugs with different mechanism of action, from opioid to σ 1 receptor, from antiviral to antiproliferative.

Based upon these considerations, the design, synthesis and biological evaluation of benzomorphan-based compounds as putative antiviral and/or antitumoral drug candidates could represent a valid and versatile strategy.

Keywords: Benzomorphan, Antiviral, Antitumoral, Sigma-1, Opioid, Mu opioid receptor, Delta opioid receptor, Kappa opioid receptor.

Benzomorphan has been the subject of exploration in medicinal chemistry. Benzomorphan is a structure derived by structureactivity relationship (SAR) studies based on simplification of morphine skeleton[1]. In fact, benzomorphans are mostly known for their potential analgesic profile via opioid receptor interaction[2]. However, it is possible consider the benzomorphan structure a versatile scaffold. Modification and replacement of the functional group attached to the basic nitrogen and the hydroxyl phenolic group, as well as group change in position 6 or 7 of the benzomorphan skeleton (Figure 1) led to a different class of drugs which variably act on the opioid and sigma receptors, on the Na⁺ channels and as antiviral.

For instance, Zenazocine[3] (WIN-42,964, Figure 2a) is an opioid

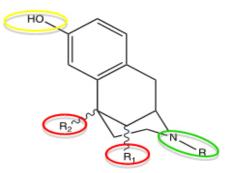


Figure 1: Possible structural modifications in the benzomorphan skeleton

analgesic in phase II clinical trials that acts as a partial agonist of the mu and delta opioid receptors (MOR and DOR). Similarly, Bremazocine[4] (Figure 2b) is a kappa opioid receptor (KOR) agonist related to pentazocine and possesses potent and longlasting analgesic and diuretic effects. Alazocine ((-)-SKF-10,047, Figure 2c) [5] is the first drug discovered to act at sigma1 (σ 1) receptor. Crobenetine[6] (Figure 2d) is a potent, selective and highly use-dependent Na⁺ channel blocker. Moreover, NITD-2636 [7] is a benzomorphan based compound that displayed a broad spectrum of antiviral activity.

Wang et al., by a systematic study consisting in the screening of libraries with diverse compound structures with antiviral activity, identified NITD-2636 (Figure 3). This last owns a benzomorphan core structure and exerts antiviral activity through suppression of viral RNA translation. Modification on the NITD-2636 structure, led to a series of derivatives that maintained the antiviral profile.

Interestingly, as previously reported the dextrorotatory benzomorphan (+)SKF-10047 binds σ 1 receptor. σ 1 receptor is highly expressed in various tumor cell types, including breast and prostate tumor cell lines [8,9]. Although the role of σ 1 receptor in tumor cell biology remains unclear, it was demonstrated that some σ 1 receptor putative antagonists inhibit tumor cell proliferation in vitro and inhibit tumor growth in mouse tumor xenograft experiments. Moreover, it was also proved that the protracted σ 1 antagonist treatment could lead to apoptotic cell death [10,11]. Deactivation of signalling pathways downstream σ 1 receptor was shown to have an effect on cell proliferation and survival and that cancerous cells are significantly more susceptible than non-cancerous cells to a negative regulation. Thus, synthesis of benzomorphan-based compounds with high affinity and selectivity versus σ 1 receptor, depending on the efficacy profile, could be a useful strategy either to address the antitumor therapy or to label σ 1 receptor that in tumor cell lines are over expressed and to obtain suitable tools to investigate the pharmacology of σ 1 receptor.

Building upon these considerations, the design and synthesis of benzomorphan-based compounds opportunely modified could represent a valid and versatile strategy. **Citation:** Rita Turnaturi and Lorella Pasquinucci (2016) Benzomorphan Skeleton as Scaffold for Analgesic, Antiviral and Antitumoral drugs. Chemi. Compol. J 1(1): 6-7.

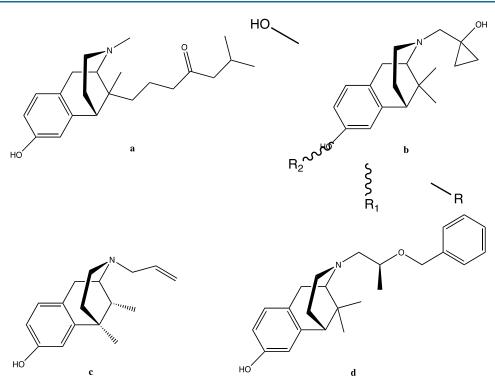


Figure 2: Zenazocine, Bremazocine, Alazocine and Crobenetine structures

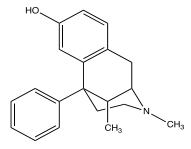


Figure 3: NITD-2636 structure

References

- 1. Shulgin AT. Drugs of Abuse in the Future. Clin Toxicol. 1975; 8(4):405-456.
- Bodnar RJ. Endogenousopiates and behavior: 2014. Peptides. 2016; 75:18-70. doi: 10.1016/j.peptides.2015.10.009.
- Ward SJ, Pierson AK, Michne WF. Pharmacological profiles of tonazocine (Win 42156) and zenazocine (Win 42964). Neuropeptides. 1985; 5(4-6):375-8.
- Dortch-Carnes J, Potter DE. Bremazocine: a kappa-opioid agonist with potent analgesic and other pharmacologic properties. CNS Drug Rev. 2005; 11(2):195-212.
- Iwamoto ET. Pharmacologic effects of N-allylnormetazocine (SKF-10047). NIDA Res Monogr. 1981; 34:82-8.
- Laird JMA, Carter AJ, Grauert M, Cervero F. Analgesic activity of a novel use-dependent sodium channel blocker, crobenetine, in mono-arthritic rats. Br J Pharmacol. 2001; 134(8):1742-1748.
- Wang QY, Kondreddi RR, Xie X, Rao R, Nilar S, Xu HY, et al. A translationinhibitorthatsuppresses dengue virus in vitro and in vivo. Antimicrob Agents Chemother. 2011; 55(9):4072-80. doi: 10.1128/ AAC.00620-11.

- CaveliersV, Everaert H, John CS, LahoutteT, BossuytA. Sigma receptorscintigraphy with N-[2-(1'-piperidinyl)ethyl]-3-(123)I-iodo-4-methoxybenzamide of patients with suspected primarybreastcancer: first clinical results. J NuclMed. 2002; 43:1647–49.
- John CS, Gulden ME, Li J, Bowen WD, McAfee JG, Thakur ML. Synthesis, in vitro binding, and tissuedistribution of radioiodinated 2-[1251]N-(N-benzylpiperidin-4-yl)-2-iodo benzamide, 2-[¹²⁵1]BP: a potential sigma receptor marker for human prostate tumors. Nucl Med Biol. 1998; 25(3):189–194.
- Spruce BA, Campbell LA, McTavish N, Cooper MA, Appleyard MV, O'Neill M, et al. Small molecule antagonists of the sigma-1 receptor cause selective release of the death program in tumor and selfreliant cells and inhibit tumor growth in vitro and in vivo. Cancer Res. 2004; 64(14):4875–4886.
- Kim FJ, Schrock JM, Spino CM, Marino JC, Pasternak GW. Inhibition of tumor cell growth by Sigma1 ligand mediated translational repression. BiochemBiophys Res Commun. 2012; 426(2):177-82. doi: 10.1016/j.bbrc.2012.08.052.