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Abstract
Periodontitis is a complex and multi-factorial inflammatory 
disease. Dysbiotic microbial communities of keystone pathogens 
induce host response, which are also responsible for tissue-
destructive inflammation and inflammatory bone loss. Microbiata 
in the microbial dental biofilm stimulate innate immunity via the 
Toll-like receptor (TLR) family of pattern-recognition receptors. 
TLRs recognize the antigens and activate pro-inflammatory 
cytokines in the periodontal tissues. The transition from gingivitis 
to periodontitis requires both a dysbioticmicrobiota and a 
susceptible host. Understanding the role of TLRs signaling in the 
periodontal health and disease may be helpful for providing new 
insight to the pathogenesis of periodontitis and developing new 
therapeutic approaches.
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Introduction
Periodontal diseases are a group of infectious/inflammatory 
diseases involving Gram-negative, anaerobic and microaerophilic 
bacteria that colonize the subgingival area and cause local as well 
as systemic elevations of pro-inflammatory prostaglandins and 
cytokines, which result in tissue destruction. Periodontitis is 
characterized by gingival inflammation, alveolar bone resorption, 
and attachment loss [1].Immune responses are activated upon 
stimulation by bacteria or their toxins present in the dental biofilm 
and eventually play a major role in alveolar bone destruction 
observed in periodontitis. However, the exact mechanisms 
of the molecular recognition and signalling transduction of 
host immune-inflammatory responses in periodontitis remain 
obscure [2]. Moreover, mechanisms leading to dysbiosis in 
microbial dental biofilm in periodontitis or homeostasis in 
periodontal health have not been clarified yet.

What is Dysbiosis?
Dysbiosis is defined as an imbalance in the relative abundance 
of microbial species within an ecosystem that is associated with 
a disease such as periodontitis [3-5]. Dysbiosis can be either the 
cause or the consequence of disease. Homeostasis is a condition 

of equilibrium or stability in a system [4,5]. In homeostasis there 
is a balanced relation between a host tissue and the resident 
microbiota that prevents destructive inflammation or disease 
[4,5]. 

The mechanisms leading to dysbiosis have not been clarified 
so far. Some researchers try to explain the mechanism with 
the keystone-pathogen hypothesis that favor the remodeling of 
a normally symbiotic microbiota into a dysbiotic and disease-
provoking state. Certain low-abundance pathogens can subvert 
host immunity in this way [3,6].

Keystone pathogens are microbial species that remodels a 
microbial community in ways that promote disease onset 
and progression [4,5]. Keystone pathogens can cause or 
contribute to homeostasis breakdown. Certain periodontal 
bacteria, such as Treponemadenticola, Tannerella forsythia, and 
Aggregatibacteractinomycetemcomitansare strongly associated 
with destructive inflammatory responses and additionally 
subvert the host response in that way. 

What is the role of Dysbiosis in disease?
Impairment of homeostatic balance leads the destructive 
inflammation in periodontitis [7]. It has recently been proposed 
that periodontitis fundamentally represents disruption of host-
microbial homeostasis caused by dysbiosis of the periodontal 
microbiota[7,8]. In a study it was shown that P. gingivaliscan act 
as a keystone pathogen, which reshapes an otherwise harmless 
periodontal microbiota into a disease-provoking microbiota[7]. 
Moreover, P. gingivalisact as a keystone member of the periodontal 
microbiota because it has an ability to exploit complement and 
TLRs [7]. Subversion of complement and TLRs might contribute 
to periodontal tissue destruction. The interactions between 
microbiata and the host immune receptors may initiate the 
cytokine production and could be responsible for the tissue 
breakdown in inflammatory response.

What is TLR?
Toll gene products were first discovered in 1985 and were 
described as being critical for the embryonic development of 
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dorsal-ventral polarity in the fruit fly, Drosophila [9,10]. In 
1991 the first TLR was identified in humans [11]. Now it is quite 
clear that Toll-like receptors function as key pattern-recognition 
receptors of the innate immune system [12]. They recognize and 
distinguish highly conserved structures present in large groups 
of microorganisms. The structures are referred to as pathogen-
associated molecular patterns. TLRs are pattern recognition 
receptors (PRRs), which recognize signature molecules of 
microorganisms in innate immune systems [13].In addition to 
their regulation of innate immunity, a subset of TLR-induced 
signals is dedicated to the control of adaptive immunity [14]. 
TLRs are predominantly expressed on cells of the innate immune 
system, including neutrophils, monocytes/macrophages, and 
dendritic cells. Bacteria express various pathogen-associated 
molecular patterns (PAMPs) that can be detected by TLRs [15]. 
Two members of the TLR family, TLR2 and TLR4, have been 
identified as the principal signaling receptors for bacterial cell 
wall components. TLR2 recognizes a wide variety of PAMPs, such 
as lipoproteins and peptidoglycans from both Gram-positive and 
Gram-negative bacteria, as well as lipoteichoic acid from Gram-
positive bacteria [16]. On the other hand, TLR4 recognizes 
lipopolysaccharide (LPS) from Gram-negative bacteria [17]. 

How TLRs activate cytokine production?
Porphyromonasgingivalisis a Gram-negative anaerobic bacterium 
implicated as a major periodontal pathogen [18,19]. Recent studies 
demonstrated that P. gingivalisorchestrates inflammation through 
manipulation of host immunity and periodontal microbiota and 
that periodontal disease is initiated by polymicrobial synergy 
and dysbiosis[3,20]. Surface components of P. gingivalis, such 
as LPS, lipoproteins, and fimbriae, interact with TLR2 and 
TLR4 expressed by host cells and stimulate production of 
proinflammatory cytokines [21]. They play a key role in host 
defense by recognizing, engulfing, and killing microorganisms 
[14]. Stimulation of TLRs by microbial components triggers 
expression of several genes that are involved in immune responses. 
The molecular mechanisms by which TLRs induce gene 
expression have different TLR-mediated signaling pathways [22]. 

Myeloid differentiation primary-response protein 88 (MyD88), 
a key adaptor molecule, is used by most TLRs. MyD88 mediates 
the TLR-signaling pathways [23]. TLR signaling cascades are 
separated into two groups: MyD88-dependent pathway and 
MyD88-independent pathway. MyD88-dependent pathway 
is essential for most TLR-mediated cell activation [24,25]. 
Activation of these pathways induces expression of cytokines 
and chemokines[23]. 

Where are TLRs in periodontal tissues?
TLR expression by human gingival epithelial cells has been 
investigated in gingival biopsies and the cells express TLR2, 
TLR6, and TLR9 [26] and low levels of TLR4 [27]. An abundance 
of TLR2-positive cells has been observed also in connective tissue 
subjacent to the pocket epithelium [28]. Gingival epithelial cells 
express TLR3 and TLR9 [26] and human gingival fibroblasts 
express TLR2, TLR4 and TLR9 [29,30]. 

How chronic periodontitis affects TLR activities?
Recently, TLR activities have become a popular topic in 
periodontitis because of the new data about dysbiotic microbial 
communities of keystone pathogens and the host reaction to 

microbiata. Most of the studies have shown elevated TLR activities 
in periodontitis and these activities positively correlated with the 
clinical periodontal parameters. Beklenet al. (yıl) studied ten 
healthy and ten periodontitis gingival tissue specimens and they 
observed that periodontitis samples showed more intense TLR4 
expression on gingival epithelial cells [31]. In another study, 
authors found that the expression level of TLR2 was higher in 
all the periodontitis patients than in healthy individuals and 
the expression of TLR2 was higher in the epithelial cells than 
in the connective tissue cells [32]. Wara-aswapati examined the 
mRNA expression levels of TLR2, TLR4, and TLR9 and their 
relationship with periodontopathic bacteria in periodontal 
tissues. Furthermore, the mechanism of TLR induction by 
Porphyromonasgingivaliswas investigated in human gingival 
fibroblasts. Gingival tissue and subgingival plaque samples were 
collected from 19 patients with chronic periodontitis and 16 
control individuals without periodontitis. According to the results, 
the expression levels of TLR2 and TLR9 were significantly higher 
in the tissues of periodontitis patients compared to the tissues in 
the control group. The mRNA levels of TLR2 and TLR9, but not 
TLR4, were positively correlated with the number of P. gingivalisin 
subgingival plaque. This study suggests that P. gingivalisinfection 
induces TLR2 and TLR9 upregulation in patients with 
periodontitis [33].Moreover,statistically significant upregulation 
of TLR9 and TLR8 have been reported in chronic periodontitis 
tissues compared to healthy sites [34]. In another study, gingival 
tissue samples were obtained from eight chronic periodontitis 
and nine gingivitis (3 mild; 3 moderate; 3 severe) patients. Eight 
control samples were also obtained from healthy individuals. The 
expression of TLR2 and TLR4 was significantly elevated in tissues 
of gingivitis and chronic periodontitis compared to the controls. 
In gingivitis samples TLR2 expression was increased compared 
to TLR4. The expression of TLR4 was significantly higher than 
TLR2 in chronic periodontitis [35]. Lappinet al showed that the 
median soluble stimulants of TLR2 and TLR4 were significantly 
higher in saliva of periodontitis patients compared with saliva of 
healthy subjects [36]. Buduneliet al investigated whether patients 
with chronic periodontitis exhibit different salivary or plasma 
concentrations of TLR2 and TLR4 compared to subjects who are 
clinically healthy [37]. Twenty-two otherwise healthy patients 
with chronic periodontitis and 21 systemically and periodontally 
healthy control subjects were included in that study. The salivary 
TLR2 levels were similar in the two study groups. The patients 
with chronic periodontitis exhibited significantly higher salivary 
TLR4 and plasma TLR2 and TLR4 levels [37]. In a recent study, 
subgingival plaque samples from both healthy and diseased sites 
in the same individuals were obtained from adults with chronic 
periodontitis and screened for their ability to either activate TLR2 
or TLR4 and to antagonize TLR4-specific activation agonist, F. 
nucleatumLPS. Subgingival plaque from diseased sites strongly 
activated TLR4, while matched plaque samples obtained from 
healthy sites were significantly more variable with some samples 
displaying strong TLR4 antagonism while others were strong 
TLR4 agonists when combined with F. nucleatumLPS [38].Wang 
et al found increased expression of TLR-2 in human gingival 
fibroblasts of inflammatory gingiva than those in healthy group 
[39]. Mori et al investigated the expression of TLR2 and TLR4 
in human periodontal disease and showed higher TLR2 positive 
cells in mild group and higher TLR4 positive cells in severe 
gingivitis [40]. 
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Conclusion
In summary, periodontitis is a complex and multi-factorial 
inflammatory disease. Immune response does not act solely 
as a protective mechanism, but it is also responsible for 
tissue breakdown in periodontal diseases. Periodontal tissue 
homeostasis in regards with the balance between the host response 
and themicrobial challenge in health and the mechanisms in 
controlled inflammatory state in gingivitis has not been clarified 
yet. The transition from gingivitis to periodontitis requires both 
a dysbioticmicrobiota and a susceptible host. Understanding 
the role of TLRs signaling in the periodontal health and disease 
should be helpful for providing new insight to the pathogenesis 
of the periodontitis and new therapeutic approaches may be 
developed.
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