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Abstract
A new, self-consistent method for the removal of ring-shaped 
artifacts in reconstructed tomographic images is presented, 
based on a different approach with respect to the currently 
adopted algorithms. Here, either afiltering of the sinogram 
or a modification of the final image could introduce further 
distortions. Starting from the difference between the original 
and a re-projected sinogram, our method is based on a dominant 
mode analysis similar to that originally introduced by Karhunen 
and Loeve. The algorithm has been tested numerically, and 
evidences of its accuracy are provided. 
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Introduction
The use of micro-computed tomography (μ-CT) has gained 
considerable importance in the last three decades, since of its 
development in 1982 [1]. This wide success can be mainly ascribed 
to its large field of applicability. Exploiting the possibility of 
catching the details of structures at the scale length of micrometer, 
μ-CT has been used within many scientific frameworks, ranging 
from the bio-medical field to material science.

Scanners employed for μ-CT are composed of a fixed X-rays 
source, a fixed detectors' array, and a rotating sample. The 
uniform rotation around a given axis allows the acquisition 
of sample's projections at different angles. Beam attenuation 
is often measured using a two-dimensional high-resolution 
X-rays detector. This device consists in general of a scintillating 
material coupled with a photo-cathode and a charge coupled 
device (CCD) for digitalizing the data. It is particularly difficult 
to perform an accurate calibration of the entire apparatus. Using 
a fixed detectors' array, a miscalibration of a single device brings 
to a systematic error. The resulting bias in the corresponding 
attenuation leads to the introduction of ring-shaped artifacts in 
the reconstructed sample's cross-sections [2]. The use of a Filtered 
Back-Projection (FBP) [3,4] algorithm in the reconstruction 
enhances the effect of the offset. This is a result of the filtering 
procedure implicit in the method, which increases the relative 
strength of the high-frequency components. 

Circular artifacts arising in reconstruction may also be due to the 
presence of dust on the surface of a detector, to a damage in one 

of the devices, a defective data acquisition system [5], or even 
being a consequence of the beam hardening effect [6]. 

Finally, ring-shaped structure in the reconstruction can be 
introduced by particular experimental configurations, in which, 
for instance, the time rays spent within the sample increases going 
from the edge to the centre. One example is a specimen with a 
square cross section projected at 45 degrees. The attenuation 
measured from the external detectors is systematically enhanced 
with respect to that measured in the centre. This results in ring-
shaped artifacts, which can be easily confused with structural 
conformations of the specimen.

The removal of ring artifacts is important for enhancing the 
quality of μ-CT images, but can also be a crucial point for some 
applications. An example is the study of a displacement fields, to 
be retrieved from Digital Volume Correlation, DVC, exploiting 
the registration of two or more 3D tomographic images. Indeed, 
the underlying hypothesis is that the micro-structural features 
captured in the image are advected with the material itself. 
Artifacts that would be fixed with respect to the lab frame would 
clearly bias the displacement field measurement.

In literature, different methods have been proposed for removing 
ring-shaped artifacts. Available procedures can be cast into two 
sets. A first kind of approach consists of an a-priorianalysis of 
the data. In this perspective, the measured attenuations are 
plotted within a sinogram, where the rows represent the different 
projection, and columns the responses of a single detectors at 
each angle. The biased data inducing the ring artifacts forms here 
brighter or darker vertical lines. Removing their offsets eliminates 
the ring-shaped structure in the reconstructed images.

Bias elimination can be performed in different ways. A first 
possibility is based on the fact that, in the Fourier transform of 
the sinogram, defective pixels form spikes at high frequencies. 
Their removal can then be obtained with a one dimensional 
Butterworth low pass-filter [7]. More recent works, employing 
a similar filtering procedure, try to enhance the performances 
of the filtering part, introducing sophisticated algorithms. 
In[8], spurious components are cut using a weighted median 
filter, similar to those employed for enhancing Signal-to-Noise 
ratio (S/N). In general, however, the filtering operations are 
detrimental to the resolution of images, and filtering parameters 
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are to be determined in a rather subjective fashion, making this 
class of procedures unsuited to metrological measurements [9].

Another method performs angular averages of the sinograms 
in order to highlight detectors' bias. The first step consists in 
summing the grey levels corresponding to one detector photosite, 
for all available projection. Smoothing out the average response 
provides an estimate of the detector's bias which is used to 
correct each single projection. One difficulty is that the average 
projection is theoretically expected to display a non smooth 
profile for sharp edged specimen. Thus the filtering is here again 
detrimental to the quality of the reconstruction as part of the 
signal is considered as noise [10]. Thus, in general the a-priori 
approaches are conceptually not completely satisfactory, since 
the partition between signal and noise cannot be decided on a 
general ground.

Another type of approach works a-posteriori on the reconstruc-
tion, as illustrated in [11]. Here, the image is analysed, in order to 
obtain a segmentation of the sample's section with respect to the 
background area. The Region of Interest (ROI) individuated in 
this way is processed to separate and eliminate the ring artifacts 
from the edge of the object. This kind of procedure often does 
not lead to a complete elimination of the artifacts, whereas some 
of the edges belonging to the object can be deleted. 

In this work, we propose a new self-consistent method for the 
removal of ring artifacts, which can be ideally placed in between 
the two above mentioned approaches.

In fact, the algorithm relies on a transformation of the measured 
attenuations, as in the a-priorianalysis. The difference is that the 
transformation of the sinogram depends on the first reconstructed 
image, resembling thea-posteriori approach.

The paper is organized as follows. Next section introduces the 
main underlying idea of the new method, together with some 
notation which will be used in the rest of the work. The third 
paragraph deals with the Karhunen-Loeve (KL) transform, 
which is used in the implementation of the algorithm. The fourth 
section presents a simple numerical application, together with 
a discussion of the results and some computational details. A 
paragraph summarizing conclusions and perspectives for the 
method ends the work.

Methods 

Description

As recalled in the introduction, data acquisition in μ-CT involves 
a rotating specimen, a fixed X-ray source, and a fixed system for 
rays detection. In general, each radiograph R(t,z,θ) is indexed 
by θ, the angle between the fixed and the rotating frame, t, the 
radial coordinate, and z, which varies along the rotation axis of 
the specimen.

If the detector (vertical) axis and the rotation axis of the 
specimen are well aligned, constant z data will remain in the 
same detectors' plane under rotation. It is then convenient to 
consider the tomographic reconstruction as a two-dimensional 
problem, based on a sinogram S(t,θ), which for each z value 
is defined from the relation S(t,θ)=R(t,z,θ). Reconstruction 
consists in computing the original absorption coefficient 
maps, f(x), starting from the measured value of S(t,θ).

Performing a reconstruction is then equivalent to solving an 

inverse problem whose direct 

∏θ . f = Sθ,			                                               (1)

where f is a vector yielding the pixels decomposition of the 
sought reconstructed image f (x,y), Sθ the vector containing the 
measured S(t,θ) sinogram, and ∏θ the projection matrix, with the 
parameter θ fulfilling the transformation equation

x cos(θ) + y sin(θ) = t,                                                                    (2)

between the fixed frame coordinates, x and y, and the rotated 
projection coordinate . 

Even if the reconstruction problem, as formulated in Eq. 1, would 
be naturally tackled with an Algebraic Reconstruction Technique 
(ART) [12], the benchmark in this field is currently represented 
by the above mentioned FBP method [3,4]. 

Once that a solution, f, to the reconstruction problem has been 
found, it is straightforward to evaluate the action on it of the 
projection operator ∏θ. This yields a re-projected sinogram, 
S’θ,which in an ideal situation should perfectly match Sθ. 
However, because of the imperfect signal acquisition, as well as 
of the inaccurate pixel representation, and other bias sources 
like the mis-alignment of detector and rotation axes, a non-zero 
residual ∆S = S’ - S.

The main idea is that this residual contains most of the biased 
response of the detector cell. In order to evaluate this biased 
component, the intensity recorded at a particular detector site, ti, 
is assumed to be the true intensity scaled by a correction factor 
1+ηi = 1+η (ti), where the correction with respect to unity is 
assumed to be small, η<< 1. Moreover, since the exposure time 
may fluctuate in between different radiographs, it has to be taken 
into account another scaling correction factor 1+Єi = 1+Є(θi), 
where it is again assumed Є<<1.

The sinogram is constructed from the logarithm of the received 
intensity, scaled by the brightfield (assumed here to be uniform). 
Hence, with reference with the ideal sinogram, S0 the measured 
one is

S (t,θ) = S0 (t,θ) + η (t) Є (θ).                                                          (3)

The goal is to estimate both the one dimensional corrections, Є 
(θ), and η (t), starting from the two-dimensional residual ∆S. The 
following section describes the strategy which has been used.

Karhunen-Loevetransform

The issue to address is to determine a couple of functions, η (t) 
and Є (θ), whit a product equating the residual ∆S. This problem 
can be only formulated in a weak sense, since of the noisy 
character of ∆S and the larger amount of available measured data 
with respect to the unknowns.

For this reason, we chose to start from the minimization of the 
quadratic difference

( )T 2
1= ( ( , ))S tT i## ( ) ( ))t 2

h e i+ dtdi                        
Imposing null variations with respect to both η and Є leads to 
the system

(
T

ST
dh
d =- # ( , ) ( )t ti h e- ( )) ( )d 0i e i i =

(
T

ST
de
d =- # ( , ) ( )t ti h e- ( )) ( )t dt 0i h =

(4)

(5)
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from which

( , )S tT i e# ( ) ( )d ti i h= ( ) d2e i i#
and

( , )S tT i h# ( ) ( )t dt e i= ( )t dt2h#
Let us denote with ||η|| and ||Є|| the  norm of η and Є 
respectively, and with A = ||η|| ||Є|| their product. Combining 
the two equations above leads to

( , )
A

S t
1
2 T i## ( , ) ( )S t tT i hl l ( ),d dt ti h=l

and

( , )
A

S t
1
2 T i## ( , ) ( )S tT i e il l ( ),d dti e i=l

We can then introduce the two integral operators

( , )t t def STU l # ( , ) ( , ) ,t S t dTi i il
and

( , ) defi iW l ( , )S tT i# ( , ) ,S t dtT il

using which the two equation to solve, Eqs. 8 and 9, take the form 
of two eigenvalue problems, namely

( , ) ( )t t thU l l# ( ),dt A t2
h=l

and

( , ) ( )i i ieW l l# ( ) .d A2i ie=l

The solution to be retained is the one associated with the largest 
eigenvalue, A2 = λ. The corresponding eigenvector η can be 
conventionally chosen to have a unit norm, ||η|| = 1, so that ||Є|| 
= λ1/2. It has to be noticed that it is unnecessary to solve both the 
eigenvalue problems, as they are related. Once that η has been 
determined, Є takes the form

( ) STe i = # ( , ) ( ) .t t dti h

The procedure described here is similar to that proposed by 
Karhunen [13] and Loeve [14], usually dubbed KL-transform. 
In KL algorithm, all the terms coming from the diagonalization 
of either Ф or Ψ are retained. The main difference with our 
algorithm is that we need to retain only the dominants terms. 
This results in a significant enhancement of the computational 
effectiveness of the method. 

Results and Discussions
A numerical test has been conducted on the new method, in 
order to assess its reliability and efficiency. Results show that the 
algorithm is fast, highly efficient, and easy to implement. 

We start considering the sinogram generating the classical 
Shepp-Logan Phantom (SLP) [4], which for simplicity has been 
represented with a 512X512 pixels image. The attenuation are 

here modified in order to include, at some generic positions, 
an offset inducing ring-shaped structure in the reconstruction. 
The resulting sinogramis shown in Figure 1, where the offsets 
are represented as brighter horizontal lines. The bias has been 
randomly chosen between [0.1,0.2] of the mean value of the 
corresponding sinogram row.Despite the noteworthy offset 

(6)

(7)

(8)

 (9)

(10)

(11)

(12)

(13)

Figure 1: The original sinogram obtained with the re-projection of the 
Shepp and Logan Phantom has been modified in order to introduce 
ring-shaped artefacts within the reconstructed image

levels, the induced ring artefacts have been easily and accurately 
removed with the new self-consistent algorithm. 

The modified attenuations, once filtered, are back-projected 
to reconstruct the SLP. The image is then re-projected itself, in 
order to obtain the sinogram S’(t,θ). In introducing the new 
algorithm, it has been argued that the biased detectors’ response 
is mostly contained in the difference between S(t,θ) and S’(t,θ), 
namely ∆S. This initial ansatz is well verified, as shown in the 
upper panel of Figure 2, where the offsets can be identified as 
the brighter horizontal lines. The background, however, is 
neither uniform nor exactly zero. The proposed method has the 
advantage of avoiding the introduction of further noise, thanks 
to the exploitation of the dominant mode analysis. 

As shown in the lower panel of Figure 2, the Karhunen-Loeve 
transform strongly enhance the ratio between the induced offset 
and the background. This achieved net separation allows a correct 
and automatic identification of the bias lines. The offset level so 
determined can be then subtracted from the original measured 
attenuation, and the SLP phantom reconstructed again. The 
difference between the corrected and the original SLP is shown 
in Figure 3. The comparison reveals the power of the method. As 
a matter of fact, the shown correction level has been reached with 
only one iteration. It can be observed that the reconstruction is 
nearly exact, as confirmed by the offsets value found a-posteriori 

(14)
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Figure 2: (up) The difference between the original and the re-pro-
jected sonogram clearly underlines the artefacts-inducing features of 
the measured attenuations. (down) The analysis carried on with the 
Karhunen-Loeve transform stresses the offset lines determining the 
ring shaped artefacts in the reconstructed image

with the KL method, as shown in Table 1. Moreover, working 
on the sinogram, the edges of the object are reproduced without 
smoothing or deletion effects.

Table 1: Offsets added to the phantom, in percentage, and the cor-
responding reconstructed values. The accuracy of the procedure is of 
the order of 1%

1st line 2nd line 3rd line

added offset (%) 13.622 13.230 17.230

mean KL offset (%) 14.362 14.034 16.840

Conclusions and Perspectives
The new self-consistent method for the removal of ring artefacts 
in reconstructed tomographic image has shown to be powerful, 
in terms of accuracy, speed, and easiness of implementation. 
Moreover, it should in principle give more reliable results with 
respect to the currently adopted algorithms. As a matter of fact, 

it is neither based on a filtering of measured attenuation, which 
could eliminate important data, nor on a modification of the 
final image, which could result in a distortion of the original 
reconstruction. 

The removal of the artefacts is nearly exact, and gives the 
possibility of recon- structing an almost artefacts-free image. 
In perspective, a fine grain upgrading of the method will be 
investigated. The aim of this further research will be to lower of 
one order of magnitude the differences between the actual and 
the determined offsets, currently of the order of 1%.

Figure 3: Comparison between the reconstructed Shepp and 
Logan Phantomsbefore (left) and after (right) the artefacts removal 
procedure
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