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Abstract
Sarcomas are neoplastic malignancies that typically arise in 
mesenchymal tissues. Like most genetic diseases, this type of 
cancer is rarely observed in less than 15,000 new cases per year 
in the United States. The identification of molecular mechanisms 
generating sarcomas and developing a new tests and therapies 
are complicated by very heterogeneous Sarcomas arising in 
many tissue lineages. Thus analyzing a substantial frequency 
of specific clinical samples requires analysis of extensive total 
patient populations. Mouse models genomes have been tailored 
with gene deletions, amplifications, and point mutations 
reported in human sarcomas to minimize the number of human 
patients required.Given that ~80% of mouse mutations result in 
similar sarcomagenesis and suppressive therapies, confirmation 
in humans is required. Thus mouse models serve as powerful in 
vivomodels to establish new biomarkers and develop therapies. 
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Introduction 

Malignant sarcoma tumors are highly debilitating and 
significantly associated with morbidity and mortality. Defined 
sarcomas arise from a plethora of tissues that are additionally 
stratified by their histopathology or patient’s age at diagnosis[1]. 
Modern rapid genomewide, pathobiological and clinical analysis 
further define and stratify sarcomas [2]. Cytogenetic analyses 
have revealed two divergent genetic profiles. The first karyotypic 
profile includes about a dozen specific translocations that initiate 
a specific cancer of all categories.In comparison, most sarcomas 
display a more complex genotype consistent with more complex 
phenotypes and rapidly advancing oncogenic tissues.

IFN-b-inducible factor LMP2/b1i related to uterine 
mesenchymal transformation
Proteasomal degradation is essential for multiple cellular 
categories including the modulation of cell cycle, gene 
expression, and immunological function [3,4,5]. Interferon 
(IFN)- b induces the expression of large numbers of responsive 
genes including subunits of the proteasome b-ring, i.e., low-
molecular mass polypeptide (LMP)2/b1i, LMP7/b5i, and LMP10/
multicatalyticendopeptidase complex-like (MECL)-1/b2i [7]. A 
molecular approach to investigating the relationship between 
IFN-γ and tumor cell growth has been enhanced by genomewide 
sequencing. Homozygous mice deficient in lmp2/b1i show tissue- 
and substrate-dependent abnormalities in proteasome functions 
[7]. Uterine leiomyosarcoma (Ut-LMS) reportedly occurred in 
female Lmp2/b1i-deficientmice beginning at 6 months of age, to 
an incidence of 37% at 12 months of age [8]. Histological studies 
on lmp2/b1i-without uterine tumors have characteristic Ut-LMS 
abnormalities [8].Recent study, experiments with mouse and 
human uterine tissues revealed a defective human LMP2/b1i 
expression in Ut-LMS in the IFN-b pathway along with specific 
effect of JANUS KINASE 1 (JAK1) somatic mutations on the 
LMP2/b1i transcriptional activation [9]. Furthermore, analysis 
of a human Ut-LMS cell line clarified the biological significance 
of LMP2/b1i in malignant myometrium transformation, 
implicating LMP2/b1i as an anti-tumorigenic candidate [9,10]. 

Tumor suppressors and oncogenic pathways involved in 
sarcomagenesis
The tumor protein 53 (TP53) tumor suppressor pathway is a 
well characterized signal cascade in tumorigenesis[11]. TP53 
is a transcription regulator gene that activates numerous DNA 
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damage-dependent checkpoint responses plus apoptotic genes 
that ablate many malignant tumors. In addition to TP53 loss of 
function via inherited mutations, the TP53 pathway is commonly 
disrupted during sporadic sarcomagenesis [12,13]. However, a 
substantial proportion of sarcomas retain wild-type TP53 but 
phenotypically display a loss of TP53 function. These research 
findings suggest that changes in other components of the TP53 
signal cascade; such as amplification of MDM2, a negative 
regulator of TP53 pathway, may result in TP53 inactivation[14,15]. 
Furthermore, mice and humans with elevated levels of MDM2 
due to a common single nucleotide polymorphism in the 
MDM2 promoter (MDM2SNP309) are both more susceptible 
to sarcoma formation [16]. Additionally, deletion or silencing 
of p19Arf, an inhibitor of the MDM2-TP53 axis, often results in 
development of sarcomas. Together, these findings indicate that 
while inactivation of the TP53 pathway is observed in the vast 
majority of human sarcomas, the mechanisms that disrupt of the 
pathway vary greatly. 

The Retinoblastoma (Rb) [17] pathway is a second major tumor 
suppressor pathway that is deregulated in many sarcomas. 
Individuals inheriting a germlineRB1 gene mutation typically 
develop retinal cancer early in life. In addition these children 
have a significantly higher propensity to develop sarcomas 
than the general population [18]. While the inheritance of 
germlineRB1alterations increases the risk of sarcoma, there 
are also numerous examples of sporadic sarcomas harboring 
spontaneous mutations and deletions in RB, particularly 
osteosarcomas and rhabdomyosarcomas [19]. Furthermore, 
P16INK4A, a negative regulator of the CDK-CYCLIN complexes that 
phosphorylate and activate RB1, is often deleted in sarcomas[20]. 
Together, these findings illustrate the importance of Rb pathways 
in sarcomagenesis. 

Conclusion
The substantial differences in the cellular origins of sarcomas, the 
lack of availability of tumor specimens in small medical practices, 
and the heterogeneity within individual tumors has impeded the 
thorough understanding of sarcoma biology. The availability 
of numerous genetic knock-outs, knock-ins, and conditional 
alleles coupled with tissue-specific Cre-recombinase expressing 
mouse lines, enables determining the impact of individual genes 
and mutations in mouse sarcomagenesis. Going forward, tumor 
analysis from multiple murine-derived tumor types can be readily 
compared and contrasted to identify critical changes in specific 
sarcomas. Molecular approaches have clearly demonstrated 
that while there are driver mutations including translocations, 
sarcomagenesis is a multi-hit disease. These mechanisms in 
animals can then be tested in the minimal number of human 
subjects to determine whether the same principles apply. The use 
of these mouse models mimicking the human disease condition 
will enhance defining critical therapeutic approaches that impact 
treating these debilitating diseases.
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