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Abstract

Fusion reactions of clusters and cupola half-fullerenes C4, C6 C7, 
C9, C10, C12, C15, C18, C20 and C24 with each other are considered 
on the basis of Arrhenius’s postulate. It means that at first there 
forms an intermediate compound and only afterwards a usual 
chemical reaction is going on. The final structure of fullerenes is 
obtained with the help of geometric modeling and is optimized 
through the use of Avogadro package. In general, the fullerenes 
which tend to take the appearance of a perfect spheroid have 
lesser formation energy. However, in some case self-organization 
of unshared electron pairs prevails.

Keywords: Cluster, Cupola, Fullerene, Fusion Reaction, Energy, 
Modelling.

Introduction 

Fullerenes can be imagined to grow by reacting with each 
other, similar to bubbles in a soap solution. In Melker AI [1] we 
considered this possibility using geometrical modeling for the 
family of fullerenes obtained from the reactions C10+C10, C12+C12, 
C16+C16, C20+C20 and C24+C24. In this case fullerenes C20, C24, 
C32, C40 and C48 can be formed; the structure periodicity being 
Δn=8, where n is the number of carbon atoms. Later on we found 
that the fullerenes can create the Δn=10, Δn=12 and Δn=14 
periodicities [2-4]. All these periodicities have one and the same 
main characteristic feature; the fullerene structure changes from 
threefold symmetry to sixfold through four and fivefold ones. 
Taking this feature as a basis for fullerene classification, we have 
suggested the periodic system for such fullerenes. It consists of 
horizontal series and vertical columns (groups). The horizontal 
series form the Δn periodicities considered, the vertical columns 
include the fullerenes of one and the same symmetry, the mass 
difference Δm for each column being equal to a double degree of 
symmetry. We suppose that this feature can be taken as a basis 

for rigorous fullerene classification in addition to the geometric 
classification developed for mini-fullerenes [5]. 

In addition to the series Δn=8, Δn=10, Δn=12 and Δn=14, 
the fullerene stricture of which was designed elsewhere, it is 
possible to incorporate into the system other series. The fullerene 
structure for the series Δn=16 was also obtained through the use 
of geometric modeling, but the results are not published. Now we 
want to increase the number of fullerenes fitted our classification 
by adding the fullerenes of the structure periodicity Δn=6; their 
graphs being designed [6]. In this contribution we present the 
structure and energy of such fullerenes. Knowing their structure 
allows one to activate the fullerenes, including unknown 
previously, for farther investigations and use of their properties. 
We suppose that the fullerenes of one and the same group have 
similar properties. 

Fusion Reactions of Cupola Half Fullerenes 

In 1889 Svante August Arrhenius postulated that a chemical 
reaction goes in the following way. At first there forms some 
intermediate compound and only afterwards a usual chemical 
reaction is going on. For fullerenes this postulate can be written 
as follows ( )A B AB C+ → →  . In Melker AI [1] we have developed 
an algorithm that has proved itself in predicting the growth of 
perfect fullerenes conserving an initial symmetry, so called 
the fusion reaction algorithm. Now consider the reaction for 
fullerenes of the Δn=6 series. 

Reactions leading to mini-fullerenes C14

In Figure 1 the atomic configurations corresponding to reaction 
7 7 7 7 14( )C C C C C+ → →  and 4 10 4 10 14( )C C C C C+ → →  are shown. At 

first two molecules C7, or C4 and C10, are moving towards each 
other (Figure 1, a and d). Then the boundary atoms (dark-red) 
interact with each other producing a compound (Figure 1, b and 
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e). During this process new covalent bonds (heavy red lines) 
are generated, distorted polyhedrons are formed; they relaxing 
into perfect polyhedrons (Figure 1, c and f). In the first case, the 
atomic configuration consists of six squares and three hexagons 
so it can be termed a tetra6-hexa3-polyhedron. It should be 
emphasized that the hexagons have a conformation known for 
cyclic molecules as a boat [7], so the configuration resembles 
more an elementary nanotube than a fullerene. In the second 
case, the atomic configuration consists of three squares and six 
pentagons so it can be termed a tetra3-penta6 polyhedron. It is a 
basic truncated bipyramid. This structure was designed [6] on 
the basis of graph theory.

Reactions leading to mini-fullerenes C18

Analogously consider the atomic configurations corresponding 
to reactions 9 9 9 9 18( )C C C C C+ → →  and 6 12 6 12 18( )C C C C C+ → →
. As before, we have two cases of joining (Figure 2 a, b, c and 
Figure 2, d, e, f). The first case results in the atomic configuration 
corresponding to a perfect polyhedron that consists of two 
equilateral triangles, six pentagons, and three hexagons, so it 
could be named a tri2-penta6-hexa3 polyhedron; the hexagons 
having also a boat conformation. The configuration also 
resembles more a nanotube than a fullerene. In the second case 
an isomer of fullerene is obtained; it is an all-vertices truncated 
triangular bipyramid.

Reactions leading to midi-fullerenes C24

C24 are 12 12 12 12 24( )C C C C C+ → →  and 8 16 8 16 24( )C C C C C+ → →  
(Figure 3). The final atomic configuration in the first case is a 
perfect polyhedron that consists of two squares, eight pentagons, 
and four hexagons, i.e. a tetra2-penta8-hexa4 polyhedron; the 
hexagons having a boat conformation. In the second case an 
isomer of fullerene C24, a truncated octahedron (cuboctahedron), 
is obtained. It is worth noting that the cavities formed in f.c.c. 
metals by irradiation are also coboctahedra bounded by {100} 
and {111} planes [8]. As for fullerenes, four-membered rings 
have rarely been considered, but they are studied as the ends of 
narrow nanotubes [9]. 

Reactions leading to midi-fullerenes C30

C30 can be written as 15 15 15 15 30( )C C C C C+ → →  and
10 20 10 20 30( )C C C C C+ → → . Their visualization is presented in 

Figure 4. In the first case the final atomic configuration is a 
perfect polyhedron of twelve pentagons and five hexagons, so it 
could be named a penta12-hexa5 polyhedron; the hexagons having 
also a boat conformation. The five-membered rings creating 
cupolas are also studied as the ends of narrow nanotubes [9]. In 
the second case the fullerene obtained is a truncated pentagonal 
bipyramid.

 

Figure 1: C14 as joining two cupolas C7 (a, b, c) and 
cluster C4 with cupola C10 (d, e, f); Dark-red and 
light blue balls are reacting and neutral atoms, 
respectively; solid and dashed red lines are new 
covalent bonds 

b) a) c) 

d) e) f) 

Figure 1: C14 as joining two cupolas C7 (a, b, c) and cluster C4 with 
cupola C10 (d, e, f); Dark-red and light-blue balls are reacting and 
neutral atoms, respectively; solid and dashed red lines are new 
covalent bonds

Figure 2: C18 as joining two cupolas C9 (a, b, c) and plane cluster C6 
with cupola C12 (d, e, f); notations are the same as before

Figure 3: C24 as joining two cupolas C12 (a, b, c) and plane cluster C8 
with cupola C16 (d, e, f); notations are the same as before

Figure 4: C30 as joining two cupolas C15 (a, b, c) and plane cluster C10 
with cupola C20 (d, e, f); notations are the same as before



J Apl Theol 2(1)                                                                                                                                                                                                                       Page | 3

Citation: Alexander I. Melker, Tatiana V. Vorobyeva and Ruslan M. Zarafutdinov (2018) Fullerenes of the Δn = 6 series. J Apl Theol 2(1): 1-4. doi: 
https://doi.org/10.24218/jatpr.2018.13.

Reactions leading to midi-fullerenes C36

C36, are 18 18 18 18 36( )C C C C C+ → →   and 12 24 12 24 36( )C C C C C+ → →  
(Figure 5). In the first case the final atomic configuration is a 
perfect polyhedron of twelve pentagons and fourteen hexagons, 
so it could be named a penta12-hexa14 polyhedron; the hexagons 
having also a boat conformation. In the second case it is a 
truncated hexagonal bipyramid. It should be mentioned that 
another way of forming a fullerene from a graphene flake, i.e. 
direct transformation of graphene to fullerene due to folding was 
considered [10].

Single and Double Bonds, Energy

We assume that the symmetry of double bonds location about 
the major axis of cupolas and fullerenes coincides with that of 
fullerene C60. Using this postulate, we have all the necessary 
input data for the optimization of the fullerene structures. The 
optimized structures of the fullerenes obtained through the use 
of Avogadro package [11] are shown in Figure 6. We have also 
calculated formation energies of these fullerenes (Figure 6). It 
should be emphasized that we developed a modified geometric 
graphics because the package graphics is incomprehensible. 

The energy change for fullerenes can be explained in the 
following manner. According to the fourth of five basic empirical 
arguments [12], “geodesic structural factors should favor the 
more symmetric isomers, which can evenly disperse the strain 
from bond-angle deformation. This suggests that only 5/6–ring 
networks are likely to occur readily”. From this it follows that the 
lesser is the fullerene surface, the lesser is its formation energy. 
Really, this is reflected in the energy of fullerenes C30 and C36 
(above), but is invalid for C14 (above and below). We see that the 
rather low energy obtained unexpectedly contradicts to these 
arguments and needs more careful investigation. We suppose 
that in this case self-organization of unshared electron pairs 
(physical factor) [13] prevails over decreasing the ellipticity 
(mathematical point of view).

Discussion

Today there is no clear and unique theory of fullerene growth. 
“The problem here is not the lack of imagination, because quite 
numerous models have been proposed. What is rather lacking is 
a model using quantities that might be evaluated and measured. 
Moreover, a theoretical model, in order to deserve its name, 
should lead to numerical predictions. In order to represent 
something more than a set of circular arguments, a model 
should predict more numerical values, parameters or functional 
relations than the number of input parameters” [14].

At this time there are a lot of papers on fullerene properties 
[15, and 277 references therein]. Using different computational 
methods (there are also a lot of programs), the authors calculate 
the properties of the most popular fullerenes which structure 
is known. As a result, the numbers obtained contradict to each 
other and only increase disordered information. To our mind, 
the absence of appreciable progress in understanding fullerene 
nature is determined by the domination of numerical calculations 
on the known structures. However, such numerical calculations 
are unable to predict new structures, so the ‘numerical progress’ 
results mainly in increasing numerical entropy. It should be 
emphasized that numerical calculations are not a theory, but a 
kind of numerical experiment [16]. 

Consequently, it is necessary not to do calculations for the sake 
of calculations, but at first to develop a system (mathematical 
model) as a basis for the calculations. The first step of creating 
any mathematical model is the formulation of the laws that 
connect the main objects of the model [17]. In our case the main 
objects are perfect basic fullerenes; we have also the preliminary 
law in the form of the periodic system [3] and the fusion 
algorithm for obtaining perfect basic fullerenes, but we do not 
know the structure of all the main objects. Besides, not all perfect 
fullerenes, the structure of which being known, are incorporated 
in the suggested periodic system. 

 

d) e) f) 

a) c) b) 

Figure 5: C36 as joining two cupolas C18 (a, b, c) and 
two graphene fragments C12 and C24 (d, e, f); 
notations are the same as before 

Figure 5: C36 as joining two cupolas C18 (a, b, c) and two graphene 
fragments C12 and C24 (d, e, f); notations are the same as before

 

E=1367   E=4060      E=3046          E=3059                E=2443 

C14       C18           C24               C30                   C36 

E=1657    E=3985       E=2452         E=1907             E=1884 

Figure 6: Structure and energy (kJ/mol) of the Δn=6 
series fullerenes with single and double bonds 

Figure 6: Structure and energy (kJ/mol) of the Δn=6 series fullerenes 
with single and double bonds
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Therefore, the next step in our investigation is obtaining the 
structure and energy of missing fullerenes with the purpose 
to incorporate the missing known and unknown fullerenes in 
the periodic system. Only afterwards, having a comprehensive 
picture, it seems reasonable to try to explain why some fullerenes 
are more stable than others.
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