Journal of Applied and Theoretical Physics Research

A Note on the Strong Unitary Uncertainty Relations

Xiaofen Huang ${ }^{1}$, Ting-Gui Zhang ${ }^{1 *}$, Xianqing Li-Jost ${ }^{2}$, Yuan-Hong Tao ${ }^{3}$ and Shao-Ming Fei ${ }^{2,4}$
${ }^{1}$ Schoolof Mathematics and Statistics, Hainan Normal University, Haikou, 571158, China
${ }^{2}$ Max Planck Institute for Mathematics in the Sciences, Leipzig 04103, Germany
${ }^{3}$ Department of Mathematics College of Sciences, Yanbian University, Yanji, 133002, China
${ }^{4}$ School of Mathematical Sciences, Capital Normal University, Beijing 100048, China

Abstract

*Corresponding author: Ting-Gui Zhang, School of Mathematics and Statistics, Hainan Normal University, Haikou, 571158, China; E mail: tinggui333@163.com

Article Type: Research, Submission Date: 31 January 2019, Accepted Date: 06 February 2019, Published Date: 20 February 2019.
Citation: Xiaofen Huang, Ting-Gui Zhang, Xianqing Li-Jost, Yuan-Hong Tao and Shao-Ming Fei (2019) A Note on the Strong Unitary Uncertainty Relations. J Apl Theol 3(1): 1-3. doi: https://doi.org/10.24218/jatpr.2019.18.
Copyright: © 2019 Xiaofen Huang, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Uncertainty relations satisfied by the product of variances of arbitrary n oservables have attracted much attention. In a recent article [Phys. Rev.Lett.120,230402(2018)], the authors provided so called strong unitary uncertainty relations for a set of unitary matrices by using the positivity property of the Gram matrix, from which uncertainty relations satisfied by two quantum mechanical observables are obtained. We derive the explicit uncertainty relations satisfied by n quantum mechanical observables from such Gram matrix approach. By some algebraic transformations, we show that these uncertainty relations are just the same as the ones derived from a positive semi-definite Hermitian matrix generated by the mean values of n observables in [Scientific Reports 6,31192 (2016)].

PAC Snumbers: $03.65 . \mathrm{Bz}, 89.70 .+\mathrm{c}$

Introduction

Uncertainty relations are of profound significance in quantum mechanics and also in quantum information theory such as entanglement detection [1,2], security analysis of quantum key distribution in quantum cryptography [3], nonlocality [4]. There are many ways to quantify the uncertainty of measurement out comes. For instance, the uncertainty relations are expressed in terms of variances of the measurement results, interms of entropies [5-7], and by means of majorization technique [8-10].

In 1927, Heisenberg [11] introduced his famous uncertainty principle, which says that

$$
\begin{equation*}
(\Delta P)^{2}(\Delta Q)^{2} \geq\left(\frac{\hbar}{2}\right)^{2} \tag{1}
\end{equation*}
$$

where (ΔP) and $(\Delta Q)^{2}$ denote variances of the position P and the momentum Q, respectively. The variance of observable A with respect to the state $\rho_{\text {is defined by }(\Delta A)^{2}=\left\langle A^{2}\right\rangle-\langle A\rangle^{2} \text {, and }\langle A\rangle=\operatorname{tr}(\rho A), ~(\rho)}$ is the mean value of observable A respect to state ρ.

Later Robertson [12] presented the uncertainty relations for arbitrary pairs of non-commuting observables A and B,
$(\Delta A)^{2}(\Delta B)^{2} \geq \frac{1}{4}|\langle[A, B]\rangle|^{2}$,
where $[A, B]=A B-B A$ is the commutator.
The above inequality employs the commutator, a characteristic quantity in quantum mechanics, to set a limit on the measurement precision.

The uncertainty relation (2) is further improved by Schrödinger [13], $(\Delta A)^{2}(\Delta B)^{2} \geq \frac{1}{4}|\langle[A, B]\rangle|^{2}+\frac{1}{4}|\langle\{A, B\}\rangle-\langle A\rangle\langle B\rangle|^{2}$.
The commutator encodes the incompatibility, while the anticommutator encodes the correlations between the observables A and B. The Schrödinger uncertainty relation (3) includes both the commutator and anticommutator, and provides a better lower bound than the uncertainty relation (2).

Recently in Ref.[14], instead of quantum mechanical observables, the authors present a strong unitary uncertainty relation for n unitary operators, by using the Gram matrices. For two unitary matrices case, they prove that the strong unitary uncertainty relation implies the uncertainty relation (3) for two observables. An interesting question is what will be the uncertainty relation for arbitrary n observables. We derive the explicit uncertainty relations satisfied by n quantum mechanical observables from such Gram matrix approach used in [14].

In terms of the covariance matrices of the mean values of Hermitian operators, in [15] uncertainty relations for n observables have been also derived. It would be interesting to compare the n-observable relations from the approach used in [14] to the ones from the approach used in [15]. By a bijection map between the unitary operators and Hermitian operators, we show here that the strong unitary uncertainty relations given in [14] are equivalent to the Hermitian uncertainty relations presented in [15], although these two kinds of uncertainty relations are derived from quite different approaches. In proving this equivalence the general representations of n-observable uncertainty relations for both approaches are provided.

Citation: Xiaofen Huang, Ting-Gui Zhang, Xianqing Li-Jost, Yuan-Hong Tao and Shao-Ming Fei (2019) A Note on the Strong Unitary Uncertainty Relations. J Apl Theol 3(1): 1-3. doi: https://doi.org/10.24218/jatpr.2019.18.

Strong unitary uncertainty relations of n unitary operators

Recently the authors in Ref. [14] presented uncertainty relations for unitary operators $U_{0}=I, U_{1}, U_{2}, \ldots, U_{n}$, based on the Gram matrix G given by entries $G_{j k}=\left(v^{(j)}, v^{(k)}\right)=\operatorname{Tr}\left[\pi_{i}^{\dagger} U_{k}\right]=\left\langle U_{j}^{\dagger} U_{k}\right\rangle, j, k=0,1, \ldots, n$, where $v^{j}=U_{j} \rho^{1 / 2}, \rho$ is a quantum state, the inner product is defined by $(A, B)=\operatorname{Tr}\left(A^{\dagger} B\right)$. As G is positive semi-definite, $\operatorname{det} G \geq 0$, one obtains the unitary uncertainty relations satisfied by the product of the variances

$$
\Delta U_{i}^{2}=1-\left|\left\langle U_{i}\right\rangle\right|^{2}=\left\langle U_{i}^{\dagger} U_{i}\right\rangle-\left\langle U_{i}\right\rangle\left\langle U_{i}\right\rangle .
$$

In particular, for $n=2$, one gets

$$
\begin{equation*}
\Delta U^{2} \Delta V^{2} \geq\left|\left\langle U^{\dagger} V\right\rangle-\langle U\rangle\langle V\rangle\right|^{2} \tag{4}
\end{equation*}
$$

By writing $U=e^{i \varepsilon A}$ and $V=e^{i \varepsilon B}$ for some Hermitian matrices A and B and small parameter ε, the above relation gives rise to the standard Robertson-Schrödinger uncertainty relation [12,13],

$$
\Delta A^{2} \Delta B^{2} \geq \frac{1}{4}|\langle[A, B]\rangle|^{2}+\frac{1}{4}|\langle\{A, B\}\rangle-\langle A\rangle\langle B\rangle|^{2}
$$

One may expect that strong uncertainty relations for general n observables can be similarly derived. Indeed for three unitary operators U, V and W, by direct calculation one obtains

$$
\begin{gather*}
\Delta U^{2} \Delta V^{2} \Delta W^{2} \geq\left|\left\langle U^{\dagger} V\right\rangle-\left\langle U^{\dagger}\right\rangle\langle V\rangle\right|^{2}+|\langle V W\rangle-\langle V\rangle\langle W\rangle|^{2} \\
+\left|\left\langle W^{\dagger} U\right\rangle-\left\langle W^{\dagger}\right\rangle\langle U\rangle\right|^{2}-|\langle U\rangle\langle V W\rangle-\langle W\rangle\langle U V\rangle| \\
-\left|\langle U\rangle\left\langle V^{\dagger} W\right\rangle-\langle V\rangle\langle U W\rangle\right|-|\langle V\rangle\langle U W\rangle-\langle W\rangle\langle V U\rangle| \\
+|\langle U\rangle|^{2}\left|\left\langle V^{\dagger} W\right\rangle\right|^{2}+|\langle V\rangle|^{2}\left|\left\langle U^{\dagger} W\right\rangle\right|^{2}+|\langle W\rangle|^{2}\left|\left\langle U^{\dagger} V\right\rangle\right|^{2} \\
\quad-2 \operatorname{Re}\left\langle U^{\dagger} V\right\rangle\langle V W\rangle\langle W U, \tag{5}
\end{gather*}
$$

where $\operatorname{Re}\{S\}$ stands for the real part of S.
By setting $U=e^{i \epsilon A}, V=e^{i \varepsilon B}$ and $W=e^{i c C}$, we can derive the following uncertainty relation,

$$
\begin{gathered}
\Delta A^{2} \Delta B^{2} \Delta C^{2} \\
\geq \Delta A^{2}|\langle B C\rangle-\langle B\rangle\langle C\rangle|+\Delta B^{2} \mid\langle C A\rangle-\langle C\rangle\langle A\rangle \\
+\Delta C^{2}|\langle A B\rangle-\langle A\rangle\langle B\rangle|-2 \operatorname{Re}\{(\langle A B\rangle-\langle A\rangle\langle B\rangle) \\
(\langle B C\rangle-\langle B\rangle\langle C\rangle)(\langle C A\rangle-\langle C\rangle\langle A\rangle),
\end{gathered}
$$

which is just the one given in [15].
In order to compare the main results from [14] with the ones in [15], we first derive the explicit expressions of the unitary uncertainty relationsfor a rbitrary n unitary operators by using the approach in [14].
With respect to the unitary matrices $U_{0}, U_{1}, U_{2}, \ldots, U_{n}$, the $(n+1) \times(n+1)$ Gram matrix G is given by the entries $G_{\mu k}=\left\langle U_{j}^{\dagger} U_{k}\right\rangle$, $j, k=0,1, ., n$. Let us construct an $n \times n$ Hermitian matrix \bar{G} with entries given by $g_{l m}=\left\langle U_{l}^{\dagger} U_{m}\right\rangle-\left\langle U_{l}\right\rangle\left\langle U_{m}\right\rangle, l, m=1,2, \ldots, n$. Geometrically, the determinant of Gram matrix is the square of the volume of the parallelotope formed by the vectors. In particular, the vectors are linearly independent if and only if the determinant is nonzero. It can be shown that

Proposition 1. $\operatorname{det} G=\operatorname{det} \bar{G}$.
Proof: By using property of determinant, we have

$$
\begin{aligned}
& \operatorname{det} G=\left|\begin{array}{cccc}
1 & \left\langle U_{1}\right\rangle & \ldots & \left\langle U_{n}\right\rangle \\
\left\langle U_{1}^{\dagger}\right\rangle & \left\langle U_{1} U_{1}\right\rangle & \ldots & \left\langle U_{1} U_{n}\right\rangle \\
\vdots & \vdots & \ldots & \vdots \\
\left\langle U_{n}^{\dagger}\right\rangle & \left\langle U_{n}^{\dagger} U_{1}\right\rangle & \ldots & \left\langle U_{n} U_{n}\right\rangle
\end{array}\right| \\
& \langle U\rangle \\
& \left\langle U_{1}^{\dagger} U_{1}\right\rangle-\left\langle U_{1} U_{1}\right\rangle \\
& \vdots \\
& \vdots
\end{aligned}
$$

Then using Laplace expansion along the first column, we have $\operatorname{det} G=\operatorname{det} \bar{G}$.

In the following we denote perm (n) any permutations of a list $\left(j_{1} \ldots j_{n}\right)$ with n different elements. The $\boldsymbol{\operatorname { s i g n }}\left(j_{1} \ldots j_{n}\right)$ of a permutation ($j 1 \ldots j n$) is defined to bel if the number of pairs of integers (j, k), with $1 \leq j \leq k \leq n$, such that j appears after k in the list $\left(j_{1} \ldots j_{n}\right)$ is even, and -1 if thenumber of such pairs is odd. In other words, $\boldsymbol{\operatorname { s i g n }}\left(j_{1} \ldots j_{n}\right)$ equals to $1(-1)$ if the natural order has been changed even (odd) times. Forexample, the sign $(12 \ldots n)=1$.
By the definition of determinant, the determinant of the matrix \bar{G} can be expressed as

$$
\begin{align*}
& \quad \operatorname{det} \bar{G} \sum_{\left(j_{1} j_{2} \ldots j_{n}\right) \in \operatorname{perm}(n)} \operatorname{sign}\left(j_{1} j_{2} \ldots j_{n}\right) g_{1 j_{1}} \ldots g_{n j_{n}}=g_{11} g_{22} \ldots g_{n n} \tag{7}\\
& \\
& \quad+\sum_{\substack{\left(j_{1} j_{2} \ldots j_{n}\right) \neq(123 \ldots n)}} \operatorname{sign}\left(j_{1} j_{2} \ldots j_{n}\right) g_{1 j_{1}} g_{2 j_{2} \ldots g_{n j_{n}}},
\end{align*}
$$

The matrix \bar{G} is the covariance matrix of vectors $U_{1}, U_{2}, \ldots, U_{n}$ and is positive semi-definite. Noting that $\Delta U_{i}^{2}(i=1, \ldots, n)$ are just the diagonal entries of the matrix \bar{G}, we have the following unitary uncertainty relations from (7),

Theorem 1. $\Delta U_{1}^{2} \Delta U_{2}^{2} \ldots \Delta U_{n}^{2}=g_{11} g_{22} \ldots g_{n n}$

$$
\begin{equation*}
\geq-\sum_{\left(j_{1} j_{2} \ldots j_{n}\right) \neq(12 \ldots n)} \operatorname{sign}\left(j_{1} j_{2} \ldots j_{n}\right) g_{1 j_{1}} g_{2 j_{2}} \ldots g_{n j_{n}} . \tag{8}
\end{equation*}
$$

Remark. The inequalities (4) and (5) can be directly derived from (8) by substituting $g_{l m}=\left\langle U_{l}^{\dagger} U_{m}\right\rangle-\left\langle U_{l}\right\rangle\left\langle U_{m}\right\rangle$ into (8).

Uncertainty relations of \mathbf{n} observables from covariancematrix approach

(6) In quantum mechanics one measures quantum mechanical observables which are Hermitian operators. In Ref. [15] the authors considered the positive semi-definite Hermitian matrix \bar{M} generated by n observables A_{1}, \ldots, A_{n}, with entries given by $m_{l s}=\left\langle A_{l}^{\dagger} A_{s}\right\rangle-\left\langle A_{l}\right\rangle\left\langle A_{s}\right\rangle=\left\langle A_{l} A_{s}\right\rangle-\left\langle A_{l}\right\rangle\left\langle A_{s}\right\rangle$, $l, s=1,2, \ldots, n$. To compare the relation (8) with the one in [15], we rewrite the n-observable uncertainty relation in [15] first.
By straight forward computation, we have the following result,
$\operatorname{det} \bar{M}=\sum_{\left(j_{i} j_{2} \ldots j_{n}\right) \in \operatorname{perm}(n)} \operatorname{sign}\left(j_{1} j_{2} \ldots j_{n}\right) m_{1 j_{1}} m_{2 j_{2}} \ldots m_{n j_{n}}=m_{11} m_{22} \ldots m_{n n}$

$$
\begin{equation*}
+\sum_{\left(j_{1} j_{2} \ldots j_{n}\right) \neq(123 \ldots n)} \operatorname{sign}\left(j_{1} j_{2} \ldots j_{n}\right) m_{1 j_{1}} m_{2_{2}} \ldots m_{n j_{n}} \tag{9}
\end{equation*}
$$

Since the diagonal entries of \bar{M} are just the variances of A_{j} defined by $\Delta A_{j}^{2}=\left\langle A_{j}^{\dagger} A_{j}\right\rangle-\left\langle A_{j}\right\rangle\left\langle A_{j}\right\rangle=\left\langle A_{j}^{2}\right\rangle-\left\langle A_{j}\right\rangle^{2}$, from the fact that \bar{M} is positive semidefinite, one gets from (9) the following uncertainty relations,
Theorem 2. $\Delta A_{1}^{2} \Delta A_{2}^{2} \ldots \Delta A_{n}^{2} \geq-\sum_{\left(j_{1} j_{2} \ldots j_{n}\right) \neq(123 \ldots n)} \operatorname{sign}\left(j_{1} j_{2} \ldots j_{n}\right) m_{1 j_{1}} m_{2 j_{2}} \ldots m_{n j_{n}}$
Relations between (8) and (10)
Next we show that the relations (8) in Theorem 1 from [14] and the relations (10) in Theorem 2 from [15] are equivalent.

Concerning the one to one map between the unitary operators and the Hermitian operators, for an unitary operator U_{j}, there is a Hermitian operator A_{j} satisfying $U_{j}=e^{i \epsilon A_{j}}, j=1,2, \ldots, n$. Taking Taylor expansions of $U_{j}=e^{i \epsilon A_{j}}, j=1,2, \ldots, n$,

$$
\begin{equation*}
U_{j}=1+i \epsilon A_{j}-\frac{1}{2} \epsilon^{2} A_{j}^{2}+O\left(\epsilon^{3}\right) \tag{11}
\end{equation*}
$$

we have

Citation: Xiaofen Huang, Ting-Gui Zhang, Xianqing Li-Jost, Yuan-Hong Tao and Shao-Ming Fei (2019) A Note on the Strong Unitary Uncertainty Relations. J Apl Theol 3(1): 1-3. doi: https://doi.org/10.24218/jatpr.2019.18.

$$
\begin{gather*}
\Delta U_{j}^{2}=\epsilon^{2} \Delta A_{j}^{2}+O\left(\epsilon^{3}\right), \\
g_{i j}=\epsilon^{2} m_{i j}+O\left(\epsilon^{3}\right) . \tag{12}
\end{gather*}
$$

Combining (8) and (12), we get
$\epsilon^{2 n} \Delta A_{1}^{2} \Delta A_{2}^{2} \ldots \Delta A_{n}^{2}+O\left(\epsilon^{2 n+1}\right) \geq$

$$
\begin{equation*}
-\epsilon^{2 n} \sum_{\left(j_{i}, \ldots, j_{n}\right) \neq(123 \ldots n)} \operatorname{sign}\left(j_{1} j_{2} \ldots j_{n}\right) m_{1 j_{1}} m_{2 j_{2}} \ldots m_{n j_{n}} \quad+O\left(\epsilon^{2 n+1}\right), \tag{13}
\end{equation*}
$$

dividing by $\epsilon^{2 n}$, and taking the limit $\epsilon \rightarrow 0$, which gives rise to the inequality (10).

Conversely, from (10) and taking into account that $\Delta A_{j}^{2}=\epsilon^{-2} \Delta U_{j}^{2}+O(\epsilon)$ and $m_{i j}=\epsilon^{-2} g_{i j}+O(\epsilon)$ one gets the inequality (8).

Therefore, according to the bijection map $U=e^{i \epsilon A}$ between unitary operators and Hermitian operators, the unitary uncertainty relation (8) and the Hermitian uncertainty relation (10) are equivalent.

Conclusion

In Ref. [14], the authors presented the unitary uncertainty relations based on the Gram matrices of multi unitary operators. In [15] the Hermitian uncertainty relations are given based on the covariance matrices of multi Hermitian operators. By deriving the explicit uncertainty relations satisfied by n quantum mechanical observables from such Gram matrix approach, we have shown that the two kinds of uncertainty relations are equivalent. The related derivations and proofs may highlight further investigations on the uncertainty relations satisfied by the product of variances of n quantum mechanical observables.

Acknowledgments

We are grateful to Bing Yu and Ya Xi for fruitful discussions. This work is supported by the NSF of China under Grant Nos. 11861031, 11761073 and 11675113, and Beijing Municipal Commission of Education (KZ201810028042).

References

1. Gühne O. Characterizing Entanglement via Uncertainty Relations. Phys.Rev. Lett. 2004; 92(11):117903.
2. Hofmann HF, Takeuchi S. Violation of local uncertainty relations as a signature of entanglement. Phys. Rev. A. 2003; 68:032103.
3. Fuchs CA, Peres A. Quantum-state disturbance versus information gain: Uncertainty relations for quantum information. Phys. Rev. A. 1996; 53:2038.
4. Oppenheim J, Wehner S. The Uncertainty Principle Determines the Nonlocality of Quantum Mechanics. Science. 2010; 330:107.
5. Deutsch D. Uncertainty in Quantum Measurments. Phys. Rev. Lett. 1983; 50:631.
6. Xiao Y , Jing N , Fei S, Li T, Li-Jost X, Ma T, et al. Strong entropic uncertainty relations for multiple measurements. Phys. Rev. A. 2016; 93:042125.
7. Maassen H, Uffink JBM. Generalized entropic uncertainty relations. Phys. Rev. Lett. 1988; 60:1103.
8. Puchala Z, Rudnicki L, Zyczkowski,K. Majorization entropic uncertainty relations. J. Phys. A: Math. Theor. 2013; 46:272002.
9. Pudnicki L, Puchala Z, Zyczkowski K. Strong majorization entropic uncertainty relations. Phys. Rev. A. 2014; 89:052115.
10. Pudnicki L. Majorization approach to entropic uncertainty relations for coarsegrained observables. Phys. Rev. A. 2015; 91:032123.
11. Heisenberg W. Über den anschqulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Zeitschrift für Physik. 1927; 43(3-4):172-198.
12. Robertson HP. The Uncertainty Principle. Phys. Rev. 1929; 34:163.
13. Schrödinger E. Situngsberichte der Preussischen Akademie der Wissenschaften. Physikalisch-mathematische Klasse. 1930; 14:296.
14. Bong K, Tischler N, Patel RB, Wollmann S, Pryde GJ, Hall MJW. Strong Unitary and Overlap Uncertainty Relations: Theory and Experiment. Phys. Rev. Lett. 2018; 120:230402.
15. Qin H, Fei S, Li-Jost X. Multi-observable Uncertainty Relations in Product Form of Variances. Scientific Reports. 2016; 6:31192.
