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Abstract 

Isolatedrandomly interconnected nets with chemical markers 
and noise are investigated, which follow Poisson or Gauss 
distribution. The obtained results reveal limit cycles. The Poisson 
limit cycles are primarily large and complex, while the Gauss 
ones are regularly small.The Poisson limit cycles have various 
types depending on the shape andtime ofthe transient part, 
whereas the Gauss ones have the same form, plain, with no 
particular types of the transient component and are small. The 
epilepticMEGs follow Poisson distributions with high magnetic 
amplitudes varying with time and repeatable at time intervals 
with similar characteristics like the limit cycles. Alternatively the 
MEGs from healthy subjects have Gauss distributions. The above 
mentioned differentiations are due to the fact that in Poisson 
distributed connectivity the activity of the system is organized 
and synchronized as in epileptic discharges while in Gauss one is 
random and disordered as in healthy subjects. Limit cycles have 
been used to form the behavior of many oscillatory systems.

Keywords:Network models, Poisson distribution, Gauss 
distribution, Limit cycles.

The Neural Net Model
The basic hypotheses of this model have been described in detail 
previously [1-4].In short, a neural net with N neurotrasmitters 
(markers)is supposed to be constructed of A neurons. A portion h 
(0<h<1) of them are inhibitory while the rest are excitatory. Each 
neuron receives on average, μ+ EPSPs (Excitatory PostSynaptic 
Potentials) and μ- IPSPs (Inhibitory PostSynaptic Potentials). K+ 
(K-) is defined the volume of the PSP produced by an excitatory 
(inhibitory) component. The neurons are also characterized by the 
absolute refractory period (r) and the synaptic delay τ (τ<r<2τ). 
For our theory, r was given the value r=1 when refractoriness was 
assumed, and r=0 if not.Ιf a quantity of neurons fire concurrently 
at time t, then all neural activity resulting from this primary 
activity will be limited to times t+τ, t+2τ,… If a neuron fires at 

time t, it produces the PSPs after a synaptic delay τ. PSPs arriving 
at a neuron are summed at once, and if this sum is greater or 
equal to θ, then the neuron will fire, or else it will be inactive. 
If the PSPs are below the threshold (θ) then they will stay with 
or without decrement for a period called the summation time. 
The firing is temporary and causes the neuron to be insensible to 
additional stimulation for the time of a refractory period [5-10].

Poisson distribution 

Following the suppositions of previous papers [1-10], the 
expectation value of the neural activity <α n+1> at t=(n+1) τ, (i.e. 
the average value) of α n+1generated by a collection of netlets with 
the same parameters (α n, μ

+ ,μ- ,h, K+ , K- ,A, θ) at t=nτ with 2 
markers ma and mb, is given by:

where Pl ,Qi,P`l`,Q`i` are the possibilities that the neuron will 
receive l EPSPs, i IPSPs or l`-EPSPs, i`-IPSPs, at time t=(n+1)τ in 
the subsystems a or b. These probabilities are given by:

Pl= exp (-αn μa
+ (1-ha) ma) (-αn μa

+ (1-ha) ma)
l/l!

Qi= exp (-αn μa
- ha ma) (-αn μa

- ha ma)
i/i!

P`l` = exp (-αn μb
+ (1-hb) (1-ma)) (-αn μb

+ (1-hb) (1-ma))l`/l`!

Q`i` = exp (-αn μb
- hb (1-ma)) (-αn μb

- hb (1-ma))i`/i`!                     (2)

The higher limits in the sums in equation (1) are given by:

lmax = A αn μa
+ (1-ha) ma

lmax` = A αn μb
+ (1-hb) (1-ma)

imax= Aαn μa
- ha ma

imax` = A αn μb
- hb (1-ma)                                                                   (3)

Tδa(θa) and Tδb(θb) are defined as the probabilities that the 

(1)
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instantaneous neural thresholds are equal to or less than θa and 
θbin subsystems a and b and are given by:

In the general case with N chemical markers mj (j=1,…,N) eq. (1) 
takes the form:

Gauss distribution 

If the numbers la, lb, ia and ib are sufficiently large, their 
distributions may be approximated by Gaussian distributions 
about their average values. 

Consequently, the probability that a neuron with marker a or b 
will obtain a definite number of EPSPs or IPSPs that will move 
the membrane potential closer to or further away from the 
instantaneous threshold will be given by:

In consequence, the possibilities Tδa(θ`a) and Tδb(θ`b) that the 
instantaneous threshold of a neuron in subsystems a and b is 
equal to or less than θ`a or θ`b` will be given by:

(5)

(6)

(7)

(8)

Accordingly, the firing probabilities P(αn,δn+1,δa) and P`(αn,δn+1,δb 
) that a neuron in subpopulations a and b, will receive PSPs 
exceeding the threshold at time t=(n+1)τ will be given by:

(9)

The general case for an isolated noisy net with N markers 
m1,m2,...,mN,where mi is the fraction of neurons with the ith 
marker at time t=(n+1)τ is given by:

Magnetic field 

The description of the magnetic field has been described in detail 
in our previous work [11,12]. In the general case, where the 
neural net has N chemical markers, it is given by the following 
equation: 

where the neural action αn+1refers to a Poisson or Gauss 
distribution of connectivity as given in the prior section. In a 

two-dimensional phase space, a limit cycle is a closed trajectory 
in phase space having the property that at least one other 

(4)

(10)

trajectory spirals into it either as time approaches infinity or as 
time approaches negative infinity. 

The aim of this study was to compare the limit cycles of the 
theoretical neural net model with Poisson and Gauss distribution 
of connectivity.

Methods
Using the equations for the prospect activity αn+1 of the net for 

Poisson and Gauss distribution respectively, we obtained phase 
diagrams. These diagrams give the steady states of the neural 
activity αss (αss = αn= αn+1) plotted versus the standard deviation δ 

of the inherent noise of the neural net. 

In this study we investigated isolated neural nets with 2-5 
chemical markers with Poisson or Gauss distributed connectivity 

and interior noise and examined their phase diagrams. In order 
to create a limit cycle we examined the time reliance of the 
magnetic field Bn, versus Δαn. 

By constructing a limit cycle there is a part that is called transient 
and characterizes the time during which the system hasn’t reached 
the periodic activity yet. The limit cycles demonstrate that the 
system has precise structural parameters and repeated periodical 
modifications. Based on the other hand on the suppositions that 

https://en.wikipedia.org/wiki/Trajectory
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the time is quantized with the unit quantum time the synaptic 
delay τ, it is not essential to differentiate the neural activityαnas it 
is usually done for neural models of continuum time, but instead 
it is taken the difference Δαn = αn+1 – αn which is included as a 
term in the description of the magnetic field Bn. 

Results
Evaluated the obtained phase diagrams we observed the 
following:

The Poisson phase diagrams are complicated and have closed 
and open hysteresis loops while the Gauss ones are simple and 
have only open hysteresis loops (Figure 1A,B). 

Comparing the obtained limit cycles we observed the following:

The Poisson limited cycles are mostly large and complex, while 
the Gauss ones are generally small. The transient part in Poisson 
limited cycles is complex while in Gauss is regularly plain (Figure 
2A,B). The Poisson limited cycles have various forms depending 
on the structure and time of the transient part, while the Gauss 
ones have the same shape, plain, without particular types of the 
transient component and are small. 

Discussion
The  Poisson distributionexpresses the probability of a given 
number of events occurring in a fixed time interval of space, 

Figure 1: Phase diagram and hysteresis curves for an isolated neural 
net with noise and 4 chemical markers a,b,c,d. Parameters: ma=0.7, 
θa=6, μ±

a = 25, ha=0.015; mb=0.15, θb=6, μ+
b = 23, hb=0; mc=0.15, θc=4,  

μ+
c = 370, hc=0; md=0.15, θd=4, μ+

d = 370, hd=0; K± = 1, r=1. A) Poisson 
distribution B) Gauss distribution

Figure 2: A) Poisson distribution: The limit cycle of an isolated neural 
net with noise and 2 chemical markers a ,b. Parameters: ma=0.8, 
θa=4, μ±

a = 9, ha=0.0301; mb=0.2, θb=4, μ±
b = 115, hb=0.001; K± = 1, r=0. 

B) Gauss distribution: The limit cycle of an isolated neural net with 
noise and 2 chemical markers a,b. Parameters: ma=0.7, θa=7, μ±

a = 16, 
ha=0.0305; mb=0.3, θb=3, μ±

b = 65, hb=0.015; K±
 = 1, r=0

distance, area or volume, with the assumption that these 
events occur with a known average rate and independentlyof 
the time since the last event. Some applications that follow 
Poisson distribution are: birth defects , genetic mutations, rare 
diseases, car accidents, traffic flow. If the number of events is 
very large, then the Gaussian or normal distribution may be 
used to describe physical events. The  Gaussian distribution  is 
a probability  distribution  that associates the normal  random 

variable with a cumulative probability. It is an arrangement 
of a data set in which most values cluster in the middle of 
the range and the rest taper off symmetrically toward either 
extreme. The Gaussiandistribution is a very common continuous 
probability distribution and is often used in the natural  and 
social sciencesto represent real-valued random variables whose 
distributions are not known.It is important because lots of 
variables studied in education and psychology are normally 
distributed,like reading ability, job satisfaction and memory.

In recent years the consequence of structure on function 
and dynamic behavior in neural nets has been also a topic 
of considerable attention because the main idea is that this 
connectivity is given by a binomial distribution. Probabilistic 
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neural nets were investigated using Poisson or Gauss distributions 
of inter-neuronal connectivity with the significant conclusion 
that when a neuron was connected to a relatively small number 
of units, a Poisson distribution law was proper but if it was 
connected to a great number of units then a Gauss law was a 
quite a good estimation. Consequently, Poisson neuronal nets 
may be viewed as approximately Gauss when the number of 
synaptic connections is relative large [13-17].

In Figure 1A,B we observe the different hysteresis curves for 
noisy neural nets with chemical markers with Poisson and 
Gauss connectivity. As we observe, a small change of δwhich 
characterizes the spontaneous activity may lead to permanent 
changes in the steady-state activity of the net. Therefore, 
the effects of the inherent noise of isolated neural nets are 
functionally comparable to the effects of sustained inputs to 
noiseless nets [18]. Another characteristic of the hysteresis loops 
in both Poisson and Gauss noisy neural nets is that in the Poisson 
case we have open and closed phase diagrams, while inGauss one 
we have only open ones. In the case of open phase diagrams, the 
high state activity is maintained, even with reduced inherent 
noise of the system, except if we introduce inhibitory inputs. 
Alternatively, in the case of closed ones, the high stable steady-
state activity might return to the lower stable state activity either 
by lowering δor by introducing inhibitory inputs.

In our former work we compared the hypothetical results with 
the investigational findings using magnetoencephalographic 
(MEG) measurements in epileptic patients and healthy volunteers 
[11,12]. The epilepticMEGs have revealed to follow Poisson 
distributions with high magnetic amplitudes varying with time 
and repeatable at time intervals with similar characteristics like 
the limit cycles. Alternatively the MEGs from normal subjects 
had Gauss distributions. The epileptic patients had high MEG 
amplitudes characterized with θ (4-7Hz) or δ (2-3Hz) rhythms 
and absence of α-rhythm (8-13Hz) whereas the MEG from 
normal subjects had low amplitudes, higher frequencies and 
presence of α-rhythm (8-13Hz). The application of transcranial 
magnetic stimulation (TMS) to epileptic patients changes the 
distribution of the MEG from Poisson to Gauss. This was in 
accordance with the connectivity of the theoretical neural model 
[12,19,20]. 

Poisson and Gauss distributions have been studied in other models 
elsewhere. Salinas [21] obtained a mathematical model for solute 
dynamics assuming that pores follow a Poisson distribution in 
the lipid phase and that their permeability’s follow a Gaussian 
distribution. He studied a new proposed theory, and suggested a 
method for finding the mean single pore flux rate from liposome 
flux assays. Witowski et al. [22]used hidden Markov models to 
improve the cut-point method in order to achieve a more accurate 
identification of the sequence of modes of physical activity. The 
cut-point method is compared with hidden Markov models 
based on the  Poisson  distribution,  the generalized  Poisson 
distribution  and the Gaussian  distribution.Seok and  Kim [23]
studied a fast optimization method for determining the minimizer 
of the negative Poisson likelihood function for the global analysis 
of fluorescence lifetime microscopy. Vega and Schnöll-Bitai [24] 
investigated new approaches for the determination of the extent 
of symmetric and asymmetric band broadening in size exclusion 
chromatography using Poisson and Gauss distributions. 

In conclusion, due to the fact that the Gauss distribution is a 
random process, the time course of this system does not exhibit 
limit cycles or if it does they must be very small, which is in a 
complete concurrence with the hypothetical neural model. 
The above mentioned differences are due to the fact that in 
Poisson connectivity the action of the system is arranged and 
synchronized like in epileptic discharges and consequently it 
would achieve limit cycles, while in Gauss connectivity the 
system is random and disordered as in healthy subjects and the 
limit cycles are especially small or they don’t exist.

Appendix
The subscript i is a marker label and indicates the properties of a 
subpopulation in the netlet characterized by the ith marker.

Parameters 

μ+
i The average number of neurons receiving excitatory 

postsynaptic potentials (EPSPs) from one excitatory neuron

μ-
i The average number of neurons receiving inhibitory 

postsynaptic potentials (IPSPs) from one inhibitory neuron

+
iK , −

iK  The size of PSP produced by an excitatory/inhibitory 
neuron

θi	 Firing thresholds of neurons

τ	 Synaptic delay

A	 Total number of neurons 

hi	 Fraction of inhibitory neurons

mi	 Fractions of neurons carrying the ith marker 

α n	  The fractional number of active neurons at time t=nτ

n	 An integer giving the number of elapsed synaptic delays

δi	 Standard deviation of the Gaussian distribution of the neural 
firing thresholds.
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