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Abstract
Here, we derived analytically a transcendental equation, which 
positive roots are the spectrum of torsional and longitudinal 
natural frequencies of cantilever composed of an arbitrary number 
of layers with the piecewise constant mechanical properties, 
densities and thicknesses. This transcendental equation has been 
obtained in the Laplace image space and the one connects the 
mechanical properties, density and layer thickness. The present 
solution can be particularly useful for either a non-destructive 
material testing or design of the cantilever structures.

Keywords: Torsional and Longitudinal resonant frequencies, 
Material patterning, Atomic Force Microscopy.

Introduction
The rapid development of new materials allowed researchers 
to create heterogeneous structures with specific functional 
properties. Such structures often consist of layers with different 
thicknesses, cross sectional areas and mechanical properties. 
To ensure that the prepared material meets required functional 
properties or to check the structural degradation of the object in 
adverse environmental conditions, it is necessary to determine 
the basic mechanical properties such as elastic moduli or 
thicknesses of individual layers.

The material characterization is performed by using either 
destructive (DTs) [1] or non-destructive techniques (NDTs) [2]. 
DTs usually provide a more reliable assessment of the properties 
of the structure than NDTs. However, the destruction or damage 
caused by DTs strongly affects the functional quality of the 
tested structure itself. NDTs allow one to test or to inspect an 
object without impairing its function. Among NDTs, ultrasonic 
methods are commonly employed to characterize multilayered 
structures [3-17]. In NDTs, the required information about the 
object’s elastic moduli and layers’ thicknesses is recovered from 
the knowledge of the spectrum of either resonance peaks or 
natural frequencies of an inspected object [18-20].

The spectrum of the resonance peaks contains information 

about the quality factor and the resonance frequencies [21]. The 
resonance frequencies are used to determine the elastic moduli 
and layer thicknesses while the quality factors yield information 
about the energy-attenuating properties of the object. The analysis 
of experimental data becomes simpler if a sample has the shape 
of a rod with its length L substantially larger than its radius R 
(R/L << 1). Nevertheless, the interpretation of experimental data 
still remains quite a complicated problem and is usually based on 
the simple model of the damped harmonic oscillator [8]. Despite 
the fact that the harmonic oscillator model correctly catches 
the qualitative behavior of the resonance and attenuation, the 
quantitative results are far from the actual values and, as to the 
spectrum of the natural frequencies it cannot give in principle.

The natural frequencies of a rod with homogeneous and 
discontinuous properties can be found by solving the partial 
differential equation and the corresponding Sturm-Liouville 
problem [21]. However, the solution of the partial differential 
equations is often a very complicated problem and therefore it 
is usually obtained by using numerical methods [22,23]. Such 
methods, of course, can give quite accurate results, but they may 
not provide an adequate insight into the physics of the problem. 
Hence, the exact solutions of problems are desirable, even though 
they are often difficult to obtain.

Throughout the decades, plenty of theoretical works concerning 
vibrating non-uniform beams or rods have been published [24-
32]. A couple of years ago, a study of the vibrating mechanical 
systems with N– stepwise constant properties has been performed 
[33,34]. It has been shown that natural frequencies are the roots 
of the transcendental equation obtained directly from the Laplace 
imaginary space.

In this paper, we carry out the systematic investigation of 
longitudinal and torsional vibrations of the rod with homogeneous 
and discontinuous material or geometric properties. Particular 
attention is given to a cantilever rod that undergoes an action 
of periodical external force, where the obtained results can be 
directly used in many problems ranging from civil or mechanical 
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engineering to material testing and micro/nano-fabrication.

Theoretical ground
Following the approach of Fedorchenko et al. [33,34], the 
longitudinally oscillating rod with an arbitrary number of 
material and geometric discontinuities (N) can be described by 
the following system of the partial differential equations

ρiuitt – Eiuixx = 0, hi–1 < x< hi, i = 1, 2,..., N, h0 = 0, hN = l,          (1a)

with the following matching conditions

	 ui(hi, t) = ui+1(hi + 1, t),                                                     (1b)

	 kiuix(hi, t) = k(i+1)u(i+1)x (hi + 1, t),                                      (1c)

where ki = EiAi, E, ρ and A are the elastic modulus, density and the 
cross sectional area of rod, respectively. For torsional oscillations 
of rod with an arbitrary number of discontinuous properties the 
equation of motion reads

	 ρiIpiθitt – GiKiθixx = 0                                                        (2a)

and the following matching conditions are imposed

	 θi(hi, t) = θi+1(hi + 1, t),                                                     (2b)

	 biθix(hi, t) = b(i+1)θ(i+1)x (hi + 1, t),                                      (2c)

where bi = GiKi, G is shear modulus, K is a geometric function 
that depends on the cantilever cross section [35] and Ip is the 
polar moment of inertia of beam.

Longitudinally oscillating cantilever with one discontinu-
ity
The method of solution and further analysis are going to 
be illustrated on the longitudinally oscillating rod with one 
discontinuity (see Figure 1). The motion of the one is described 
by Eq. (1) with i = 1, 2. To close the problem, the following initial 
and boundary conditions are imposed

	 u(x, 0) = ut(x, 0) = 0,                                                      (3a)

	 u1(0, t) = 0, u2x(l, t) = η2(t),                                           (3b)

where η2(t) = F/(E2A2) sin pt = I2 sin pt, F is applied external force 
and p is a simple frequency. Now, applying the Laplace transform 
to Eqs. (1) and (3) (for method of solution see Refs. [33,34,36], 
the solutions of Ui(x, s) in the imaginary space yield

U1(x, s) = I2 pk2 sinh (ξ1x)/D(s), 0 < x< h,                                   (4a)

U2(x, s) = (I2p/ξ2){k1ξ1 cosh(ξ1h) sinh[ξ2(x – h)] + k2ξ2 sinh(ξ1h) 
cosh[ξ2(x – h)]}/D(s), h < x < l,                                                   (4b)

where ξi = s/ci, ci = (Ei/ρi)
1/2, D(s) = (p2 + s2)d(s) and d(s) = {k1ξ1 

cosh(ξ1h) cosh[ξ2(x – h)] + k2ξ2 sinh(ξ1h) sinh[ξ2(x – h)]}.

It is evident from structure of Eq. 4 that both Ui(x, s) have the 
same common denominator D(s) with simple poles at ± ip and a 
countable set of poles given by the equation d(s) = 0. The simple 
poles at ± ip represent a pure periodical vibration responsible for 
the resonance. Whereas for the poles given by equation d(s) = 0 
correspond to the natural frequencies of the system, i.e. when 
external force coincides with a roots sn of equation d(s) = 0, then 
function Ui has poles of the second order and, consequently, 
the solution contains resonance term [37]. Introducing a new 
variable γ = is and using trigonometric identities sin (ix) = i sinh 
x and cos (ix) = cosh x, equation d(s) = 0 yields

	 k2c1 tan [γ(l – h)/c2] = k1c2 cot (γh/c1).                           (5)

Now by using the relationships for multiplications of the 
goniometric functions [38], Eq. (5) can be written in the following 
form

(k2c1 + k1c2) cos{γ[hc2 + (l – h)c1]/(c1c2)} = (k2c1 – k1c2) cos{γ[hc2 – 
(l – h)c1]/(c1c2)}.                                                                               (6)

Evidently, letting h = 0 or l in Eq. (6) yields the well-known 
equation for the natural frequencies of the homogeneous 
cantilever. Since in the real applications, the cantilevers consist 
of multiple discontinuities, therefore it is necessary to derive 
general expression for natural frequencies.

Natural frequencies of the cantilever with an arbitrary 
number of mechanical and geometric discontinuities 
(torsional and longitudinal)
The general form of the transcendental equation for an arbitrary 
number of discontinuous properties can be obtained directly 
from a Laplace image space of the solution of the problem given 
by Eqs. (1) and (2). The transcendental equation for an arbitrary 
number of discontinuities can be derived by following the 
approach previously applied for a longitudinally oscillating rod 
with one discontinuity. Solving the system of the N – algebraic 
equations with given boundary and matching conditions, the 
complex space solution and correspondingly the transcendental 
equation d(s)= 0 is found.

Omitting the bulky and time consuming intermediate algebraic 
manipulations, the transcendental equation for an arbitrary 
number of discontinuities yields

	                                                                   

here 



= −22ii

mq  with q1 ≡ 1, Qi = [ ( ) 1
)( 11 +

+ +−+ i
qq

i PP ii ] and 
for longitudinal case: Pi = ki/ci, φi = hi/ci, while for torsional case 

Pi = bi/vi, φi = hi/vi, and vi =  .

For instance, the transcendental equation for the four layered 
cantilever (N = 4) reads

(P1 + P2)(P2 + P3)(P3 + P4) cos [γ(φ1 + φ2 + φ3 + φ4)] + (P1 – P2)
(P2 – P3)(P3 + P4) cos [γ(φ1 – φ2 + φ3 + φ4)] + (P1 + P2)(P2 – P3)(P3 
– P4) cos [Λ(φ1 + φ2 – φ3 + φ4)] + (P1 – P2)(P2 + P3) (P3 – P4) cos 
[γ(φ1 – φ2 – φ3 + φ4)] + (P1 + P2)(P2 + P3)(P3 – P4) cos [γ(φ1 + φ2 + 
φ3 – φ4)] + (P1 – P2)(P2 – P3)(P3 – P4) cos [γ(φ1 – φ2 + φ3 – φ4)] + Figure 1: A sketch of the cantilever with one mechanical and geo-

metric discontinuity

(7)
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(P1 + P2)(P2 – P3)(P3 + P4) cos [γ(φ1 + φ2 – φ3 – φ4)] + (P1 – P2)(P2 
+ P3)(P3 + P4) cos [γ(φ1 – φ2 – φ3 – φ4)].                                       (8)

Conclusions
In this paper, theoretical investigation of the cantilever 
longitudinal and torsional oscillations with homogeneous and 
discontinuous properties has been carried out. The fundamental 
solution of the problem has been obtained. We show that the 
natural frequencies are the positive roots of the transcendental 
equation obtained directly from the Laplace image of the solution 
of the considered problem. The general form of the transcendental 
equation for an arbitrary number of discontinuous material 
(elastic/shear moduli and density) and geometric (diameter and 
layer length) properties has been derived for a cantilever. It allows 
one to use these results for determination of material properties 
in vibrational analysis of various cantilever based systems.
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