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Abstract
The process of capturing the energy from a system’s environment 
or surrounding and converting it into usable electrical energy 
is termed as energy harvesting. One form of energy harvesting 
is to employ piezoelectric materials to harvest energy from 
vibrating structures. These materials have the ability to absorb 
the mechanical energy and transform it into electrical energy 
that can be used to power other devices.

In this work, it is proposed to theoretically and numerically 
investigate harvesting energy from mechanical vibrations 
by a micro electro-mechanical system that is composed of a 
unimorph cantilevered beam. The relevant equations of vibration, 
deflection, and natural frequency are derived in order to find the 
relationship between the tip displacement of the beam and the 
output voltage across its length. The effect of beam dimension 
and material properties of the active and inactive layers of the 
unimorph on the system’s performance in terms of output 
power and vibrational modes frequency is also investigated 
and presented in different comparison scenarios. Results of 
the developed model are validated by comparing them to the 
theoretical and experimental data of similar work done by other 
researchers, and by using the finite element analysis simulation 
software ABAQUS®.
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Introduction
Piezoelectric energy harvesters are devices that continuously 
generate electrical power up to 100 μW when they are subjected 
to varying mechanical strain due to vibrations. This generated 
power from what is considered as autonomous and reliable energy 
source can be used to drive various sensing and actuating devices 
[1]. They can be for example implemented in aircraft systems, 
(e.g. unmanned aircraft and micro air vehicles), or they can be 
used in wireless sensor networks, indoor-outdoor monitoring, 
facility management and biomedical applications. 

Basic advantages of the piezoelectric energy harvester are its 
low cost and simplicity to use. It can be easily manufactured and 

installed because of its small dimensions and large measuring 
range. Another advantage includes its high mechanical and 
thermal state capability, so it can withstand high temperatures 
and different atmospheric pressures. It is also a self-generating 
device, which means there is no external source of energy 
required. Moreover, it can withstand great amount of tension 
and compression. The recent use of aluminum nitride (AlN) as 
a piezoelectric material has increased fabrication compatibility, 
enabling the realization of smart integrated systems on chip 
which include sensors, actuators and energy storage. 

Analysis and modeling of piezoelectric energy generators are 
very important aspects for improved performance and they have 
been the focus of many recent researches [2-4]. 

There are usually multiple techniques that are capable of 
converting the energy produced from system’s vibrations into 
electrical energy. The most prevalent three are electromagnetic, 
electrostatic, and piezoelectric mechanisms [5]. A very common 
vibration-based energy harvester consists of a cantilever beam 
which is generally composed of one or two piezoelectric 
layers, bounded by electrodes that harvest energy from the 
beam vibration. The electrodes are externally connected by an 
electric circuit that is usually modeled as a simple electrical 
load resistance. A majority of researches had been done on 
piezoelectric conversion due to the low complexity of its analysis 
and fabrication, and different beam designs have been considered 
to maximize the amount of harvested electrical power [6].

However, up to the authors knowledge, none of the previous 
mentioned researches could show explicitly the relation between 
the material properties, the geometry of the system, and the 
resonant frequency and thus on the amount of harvested energy 
at the same time.

In the present work, an equation incorporating the geometrical 
and material properties is derived to investigate the static 
deflection of a piezoelectric energy harvesting structure, in the 
form of a unimorph beam. The model developed for calculating 
the deflection is then compared to other analytical and 
experimental approaches in literature and its accuracy is verified. 
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These models are taken from the work of Smits [7,8]. 

The equation of resonant frequency of the piezoelectric 
unimorph beam is derived by using the effective elastic modulus 
and density approach, and the results are compared to those 
from ABAQUS®. 

The effect of the properties of the active and the non-active 
layers of the unimorph beam regarding deflection and natural 
frequency is investigated as well.

Theoretical Analysis
Modeling of the static deflection of the cantilevered bimorph

The following derivation for calculating the deflection in terms of 
applied voltage was done based on the model that was developed 
using energy density to calculate deflection of piezoelectric 
cantilever bimorph [7]. 

The curvature of the beam can be expressed as 
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where 31d  is the piezoelectric strain coupling coefficient, V is 
the voltage, and tp is the thickness of the piezoelectric layer.

Integrating the above equation with respect to length of the beam 
(L), yields the slope  as
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Integrating once more with respect to (L) yields the deflection of 
the beam at its end as
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The tip deflection of the beam can then be expressed as 
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The curvature of the bender can now be written as 
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where M is the bending moment and I is the moment of inertia.

Strain is a linear function of the distance from the neutral axis, 
expressed as

where (y) is the distance from the neutral axis as shown in Figure 1. 

Substituting Eq. (4) in the strain equation yields

Using the constitutive piezoelectric equation for strain [10]

31sT d Ee = +

with s as compliance coefficient, T as stress component, 31d as 
the piezoelectric strain coupling coefficient, and E as the electric 
field component.

Assuming that the stress component (T = 0), an equation 
describing the relationship between the strain (e ) and the 
applied voltage (V) can be written as

31 31 2 p
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t

e = =

Comparing Eq. (7) and Eq. (9) and solving for the tip deflection 
yields
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At any location x from the support of the beam, the deflection 
will be in the form

and the exact value of y will be calculated in the next 
subsection.

A similar relationship between the deflection of the beam and 
the applied voltage is derived by [8], which is

 
Also Smits et al [7] developed a similar model using the energy 
density to calculate deflection, which is for this structure

The predictions of all these models and the experimental results 
will be compared in Example 1 of the “Results and Discussions” 
section. 

Finding the maximum distance from the neutral axis

In this subsection, the location of the neutral axis is calculated. 
When an electric field is applied, the unimorph will bend and the 
position of the normal plane (tn) is determined by the following 
equation Li et al [9]

Where tnp is the thickness of the non-piezoelectric layer, z is the 
thickness of the unimorph, Enp is the Young’s Modulus for the non-
piezoelectric layer, Ep is theYoung’s Modulus for the piezoelectric 
layer, r is the radius of curvature, and tn is the location of the 
neutral axis (Figure 1).

The sub-letters (p, np) refer to the piezoelectric layers and the 
non-piezoelectric layers, respectively. 

Integrating Eq. (14) and solving for (tn) yields 
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To validate the above solution, it can be assumed that both layers 
are identical with the same material properties. This will lead to 
tn = 0, which means that the neutral axis is exactly in the middle. 

Substituting tn for y in eq. (11) leads to the final form of the 
deflection at any location x from the beam support:
 

                     

Once the location of the neutral axis is known, the bending 
modulus per unit length, D, can be determined by considering 
the equilibrium of moments around the neutral axis according 
to the equation:

Solving the above equation yields the bending modulus per unit 
length to be 

                                                                          

Estimation of the resonant frequency

The following estimates assume that beams are homogenous, 
composed of a single uniform material, and of constant cross 
section. However, equivalent values for Young’s modulus 
and density can be calculated for composite beams by using a 
weighted average method. The resulting equations describing 
the resonant frequencies are much more compact, making the 
scaling analysis far more straightforward. At the beginning, the 
Euler-Bernoulli beam theory is used to derive the equation of 
the frequency at the nth mode, and then the effective Young’s 
modulus and effective density are calculated and substituted in 
the frequency equation. 

The Euler-Bernoulli beam theory: The resonant frequencies 
of a beam can be estimated using Euler-Bernoulli beam theory 
[11,12]. It has the form

where  is the beam deflection as a function of position along the 
beam and time, is the density, A is the cross sectional area of the 
beam, E is the Young’s modulus, and I is the moment of inertia. 

For a fixed-free beam, the relevant boundary conditions for a 
beam of length L are:

δ(0, t) = δx (0, t)=0
δxx (L, t) = δxxx(L, t)=0

The first two boundary conditions indicate that the fixed end 
of the beam is stationary and the beam is flat at the point of 
attachment. The other two conditions are at the free end and they 
indicate that there are no forces or bending moments applied at 
that point. 

Thus, the equation to calculate the frequency of an nth mode is 
written as: [13]

with () as the nth mode eigenvalue.

Substituting I= and A=b.t, the frequency of the beam becomes 

where b and t are the width and thickness of the cantilevered 
unimorph, respectively. 

Yi et al [14] wrote the above equation in the form

 
where (Vn)

2 is the dimensionless nth-mode eigenvalue and is 
substituted in the equation instead of ()2

4.3.2 The effective Young’s modulus and effective density 
method: For a unimorph beam composed of two layers, the 
mass per unit area is

m = ρp.tp + ρnp.tnp

The effect of mass depends on the dimensionless thickness 
fraction (r), which is used to account for the thickness of each 
layer in determining the density
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This yields the equation expressing the effective density as

ρ^ =ρp rp + ρs rs
   (27)

This means that the mass per unit area becomes
m=ρ^.t

When introducing the effect of thickness and thickness fraction 
in Eq. (18), the bending modulus per unit length becomes 
  

 

Since the bending modulus per unit length (Dp) from the original 

(16)

(17)

(18)

(19)

(22)

(23)

(24)

(25)

(28)

Figure 1: Schematic and coordinates of the 
unimorph [9] (Li, et al)

(20)

(21)
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equations equal to (), it can be said that

  

The bending modulus per unit length is then

 
Thus, Eq. (23) regarding the frequency becomes

  
This equation and the equation to represent the mode shapes 
are programmed in a MATLAB code. They will be validated in 
Example 2 of the “Results and Discussions” section by performing 
a modal analysis with the finite element method (FEM) software 
ABAQUS and comparing the results.

Results and Discussions
Example 1: Estimating the static deflection 

In this example, the static deflection is estimated for a unimorph 
beam based on Eq. (16), and the results are compared to the 
measured and calculated tip deflection by Trownley [8].

The cantilevered unimorph beam used for analysis is 
approximately  long and has a width of The thickness of the active 
piezo layer  and that of the non-active layer  The active layer is 
made of Aluminum Nitride, and the non-active layer is made 
of Platinum. The relevant material properties used are shown in 
Table 1 [8].

The tip deflection at the end of the beam is depicted in Figure 2. 
Also the calculated and the measured results of other researchers 
are shown in the same figure. It can be concluded that they are 
in good agreement. Comparing equations (14-16), it can be seen 
that the tip displacement calculated by the authors is a function 
of the material properties and the geometry as well, while other 
researchers calculated it only as a function of the geometry in 
deed. This makes the results from our model more trust-worthy.

To verify the actuation response of the beam, a voltage with 
different values is applied across the electrodes and the 
displacement along the longitudinal length of the beam is shown 
for each voltage and compared to values deduced by other 
researchers including Smits et al [7]. The results are shown in 
Figures 3-5 with good agreement.

Example 2: Estimating the eigenmodes of a cantilevered 
unimorph beam

In this example, Eq. (31), which was derived to calculate 
eigenfrequencies (resonant frequencies) and the eigenmodes 
of the unimorph beam, is used in a self-developed MATLAB 
code, to obtain the mode shapes. It is validated by comparing 
the results with those from the FEM software ABAQUS, as 
mentioned before. The material properties of the beam used in 
this example are represented in Table 2.

Comparing the first 3 eigenfrequencies, which are depicted in 
Table 3, shows that the analytical and the numerical results are 
very close to each other. As seen, there is less than 2% difference 
between the results for the first three eigenfreqencies. 

The first mode of vibration has the lowest resonant frequency and 
thus provides the most deflection and the most electrical energy. 
Therefore, energy harvesters are generally designed to operate in 
the first resonant mode [4]. The mode shapes corresponding to 
the eigenfrequencies are presented in Figure 6.

In ABAQUS, the beam is modeled as a composite comprising two 
layers: a non-piezo and a piezo layer. It is easy to create and the 
simulation time is very short. The beam is constrained from one 
side while the other side is left free. One of the vibration modes 
which is produced in ABAQUS is represented in Figure 7. 

(29)

(30)

(31)

able 1: Material Properties of the Cantilevered Unimorph Beam Used 
in Example 1

Ep (in plane) 292 GPa

ρp 3200 kg/

d31 -1.98 pC/N

Enp 168 GPa

ρnp 21450 kg/

Figure 2: Applied voltage vs. deflection of developed and other models
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Figure 3: Deflection along beam longitudinal axis for an applied voltage of 10 V

Figure 4: Deflection along beam longitudinal axis for an applied voltage of 20 V

Figure 5: Deflection along beam longitudinal axis for an applied voltage of 30 V
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TTable 2: Material Properties of the Cantilevered Unimorph Beam 
Used in Example 2

Ep (in plane) 66.67 GPa

ρp 7800 kg/

Enp 168 GPa

ρnp 7900 kg/

Table 3: The Eigenfrequencies of the Cantilevered Unimorph Beam 
Used in Example 2

Frequency no. (Hz) ABAQUS

(Hz)

% Diff

1 7591.13 7708.62 1.52

2 47576.26 48233.26 1.36

3 133262.23 135461.7 1.62

Figure 6: Mode shapes of the first three eigenfrequencies of the unimorph beam

Figure 7: A mode shape of the unimorph beam produced in ABAQUS

Example 3: Estimating the deflection of the cantilevered 
unimorph beam for different material combinations

After the developed equation for beam deflection is validated 
in Example 1, the effect of the active and non-active material 
properties is investigated in this example. The cantilevered 
unimorph beam considered in this example has again a length 
of 400µm and a width of 100µm. The active (piezoelectric) layer 
has a thickness of 1µm and the non-active layer has a thickness 
of 0.2µm. The material properties of the active layers are shown 

in Table 4, while those for the non-active layer are presented in 
Table 5. 

Material selection is one of the essential considerations in any 
design, thus, comparisons have been made between different 
piezoelectric and elastic material combinations to determine 
which combination yields the highest deflection in terms 
of voltage. The results of the first three eigenmodes for each 
combination are represented in Table 6. The results of the 
static deflection of different active material combinations of 
the unimorph with steel as non-active material, obtained from 
numerical solution of the developed model, are shown in Figure 
8. Also the deflection over the length of the unimorph beam is 
shown for different values of voltage in Figures 9-11. It can be seen 
from these figures that PZT K-500 produces more deflection since 
it has the highest value of the strain coupling coefficient (d31). 

Conclusion
In this paper, a new equation to compute the static deflection 
of a piezoelectric energy harvesting structure in the form of a 
unimorph beam was derived. Results were compared to other 
analytical and experimental approaches from literature and have 
shown good agreement. 

Furthermore, the equation of resonant frequency of the 
piezoelectric unimorph beam using effective mass and effective 
density was derived and the resonant frequencies were compared 
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Table 4: Material Properties of Active Layers of the Cantilevered 
Unimorph Beam Used in Example 3

Piezoelectric Materials

Lead Zicronate Titanate K-180

Young’s Modulus (E) 71 GPa

Density (ρ) 7700 kg/

Poisson’s ratio (ν) 0.31

Strain coupling coefficient () -60 pC/N

Lead Zicronate Titanate K-350

Young’s Modulus (E) 54 GPa

Density (ρ) 7700 kg/

Poisson’s ratio (ν) 0.31

Strain coupling coefficient () -175 pC/N

Lead Zicronate Titanate K-500

Young’s Modulus (E) 45 GPa

Density (ρ) 7700 kg/

Poisson’s ratio (ν) 0.31

Strain coupling coefficient () -220 pC/N

Table 5: Material Properties of Non-active Layers of the Unimorph 
Beam Used in Example 3

Non-active Elastic Materials

Stainless steel

Young’s Modulus (E) 190 GPa

Density (ρ) 4510 kg/m3

Poisson’s ratio (ν) 0.265

Platinum

Young’s Modulus (E) 168 GPa

Density (ρ) 21450 kg/ m3

Poisson’s ratio (ν) 0.31

Lithium Niobate

Young’s Modulus (E) 186 GPa

Density (ρ) 4650 kg/ m3

Poisson’s ratio (ν) 0.241

Table 6: Effect of Changing the Material of the Active and Non-active 
Layers on the Frequencies of Beam

K-180 K-350 K-500

Platinum

ƒ1 = 3811 Hz

ƒ 2 = 23885 Hz

ƒ 3 = 66901 Hz

ƒ 1 = 3508 Hz

ƒ 2 = 21989 Hz

ƒ 3 = 61591 Hz

ƒ 1 = 3317 Hz

ƒ 2 = 20789 Hz

ƒ 3 = 58230 Hz

Stainless Steel

ƒ 1 = 4611 Hz

ƒ 2 = 28898 Hz

ƒ 3 = 80944 Hz

ƒ 1 = 4242 Hz

ƒ 2 = 26585 Hz

ƒ 3 = 74466 Hz

ƒ 1 = 4007 Hz

ƒ 2 = 25113 Hz

ƒ 3 = 70343 Hz

Lithium Niobate

ƒ 1 = 4492 Hz

ƒ 2 = 28153 Hz

ƒ 3 = 78857 Hz

ƒ 1 = 4135 Hz

ƒ 2 = 25918 Hz

ƒ 3 = 72598 Hz

ƒ 1 = 3910 Hz

ƒ 2 = 24504 Hz

ƒ 3 = 68636 Hz

Figure 8: Effect of the active layer material on the static tip deflection

to the results from the FEM package ABAQUS and they have 
shown excellent agreement too.

Finally, the effect of the properties of the active piezoelectric 
layer and that of the non-active layer of the unimorph beam is 
investigated regarding its resonant frequency and deflection due 
to an external voltage. These have demonstrated the significant 
effect of the material properties on the tip deflection, the resonant 
frequency, and hence their effect on the amount of power that 
can be produced.

Figure 9: Deflection along the length of the beam for different active materials at V = 10 volts
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Figure 10: Deflection along the length of the beam for different active materials at V = 20 volts

Figure 11: Deflection along the length of the beam for different active materials at V = 30 volts
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