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Abstract 

This work solves the adaptive disassembly planning problem 
based on a disassembly sequence generator Information Model, 
which is a sub model belonging to a disassembly information base 
called Disassembly Information Model (DIM). DIM is developed 
based on an extensive investigation of various informational 
aspects in the domain of disassembly planning and represents 
an appropriate systematization and classification of the products, 
processes, uncertainties and degradations related information. 
In this paper, the goal is to partially validate the DIM model by 
using it for solving the adaptive disassembly planning problem. 

Introduction 

Disassembly, as the core step in the EOL product recovery, 
is defined as “A systematic method for separating a product 
into its constituent parts, components and subassembly” [1]. 
Both the potential economic profits and the regulatory laws 
motivate the study of the EOL product disassembly modeling 
and implementation and carrying out the disassembly process 
“optimally” plays a critical role in the entire process of the EOL 
product recovery. Over the years, various methods ranging 
from network theory to mathematical programming have been 
applied in the domain of product disassembly [2]. Unfortunately, 
very few research looks into the problem from the information 
aspect, which in the author’s opinion, is the bottleneck of the 
current disassembly related research. In detail, the challenge 
is that disassembly planners have limited knowledge on what 
information is critical in the planning of the disassembly process, 
how to access this information, and, finally how to utilize 
the updated on-site information (which is unknown in the 
beginning of the disassembly process) for dynamically adapting 
the “optimal” disassembly process plan. Also, an EOL product 
is highly independent and has to be treated individually, which 
further aggravates the above mentioned problems.

Fortunately, with the advent of the internet, disassembly research 

has the opportunity to leap forward and overcome the obstacles 
mentioned above. Two specific thriving technologies under the 
umbrella of smart manufacturing, such as Internet of Things 
(IoT) and Life Cycle Units (LCU), have already been discussed in 
the disassembly research community for ideas like future cloud-
based remanufacturing [3] and semantic recovery information 
service [4]. Briefly, IoT provides a network to connect different 
physical objects, which allows them to be sensed and controlled 
remotely across existing network infrastructure, creating 
opportunities for more direct integrations of the physical 
world into computer-based systems, and resulting in improved 
efficiency, accuracy and economic benefit. LCU, on the other 
hand, is developed specifically for the product disassembly 
process. As mentioned before, in a disassembly factory, different 
products arrive continuously for disassembly, and individual 
decisions regarding optimal disassembly sequences have to 
be made for every product. It is difficult to predict any pre-
defined disassembly process sequences a priori, so the detailed 
information on how to disassemble each arriving product is 
needed. LCU is proposed under the idea of decentralizing that 
information by integrating a physical device named Life Cycle 
Units (LCU) into every product. The LCU stores information 
needed for disassembly. Once enough disassembly information 
about a product is present, the optimal disassembly sequence 
can be generated based on the actual physical status of the EOL 
product. Combining the LCU and IoT technologies together, 
individualized EOL product information could be sensed and 
collected by LCU and transferred to the central Product Lifecycle 
Management (PLM) system through the IoT network. Now, 
disassembly researchers could have the potentials to tackle the 
problem of disassembly information bottleneck.

In this paper, we developed a Disassembly Information 
Model (DIM) that can be integrated into the current Smart 
Manufacturing paradigm for efficient disassembly planning 
activities. Disassembly planning related information are 
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identified and generalized through extensive literature reviews, 
and they can be partitioned into relevant sub models. A layered 
Information Model (IM) development methodology is proposed 
to address the reusability-usability trade-off problem. The 
developed DIM is further implemented into the Web Ontology 
Language (OWL), though which relevant information can be 
computational analyzed and utilized. The validation of the 
DIM model is carried out through disassembly planning related 
application developments and one prototype application called 
“Adaptive Disassembly Planner” is developed in this work.

Literature Review

The Information Model, sometimes called ontology, is the 
consensual modelling of concepts and relationship in a domain 
of interest. Over the years, researchers have contributed to the 
development of IM or ontology in the domain of manufacturing, 
with different focusing aspects. Some notable work is reviewed 
below.

Leimagnan et al. [5]developed the Manufacturing Semantic 
Ontology (MASON) to formally capture the concepts related 
to the manufacturing industry. The semantics related to entity, 
resources and operation were captured in formal logic using web 
ontology language (OWL). Two applications about automatic 
cost estimation and the semantic-aware multi-agent system for 
manufacturing were discussed to demonstrate the usefulness of 
the proposed MASON ontology. 

Xiaomeng [6]selected the field of Design for Manufacturing 
(DFM) for his PhD study and three primary aspects are 
investigated. First, a generalized DFM ontology is proposed and 
developed, which fulfills the mathematical and logical constraints 
needed in the domain of DFM. Second, the means to guide 
users to the proper information and integrate heterogeneous 
data resources is investigated. Third, a decision support tool is 
developed to help designers consider the design problem in a 
systematic way based on the developed DFM ontology.

Pavan [7] developed an ontology called the Design Activity 
Ontology (DAO) to explicitly represent the design activity that 
can cover phases of the design process from conceptual phase 
through detail design phase. The ontology provides a formalized 
and structured vocabulary of design activities for the exchange of 
design process models and it further enables design processes to 
be modeled, analyzed and optimized in a consistent way.

Kim et al. [8]proposed a collaborative assembly design framework 
that offers a shared conceptualization of assembly modeling and 
an Assembly Design Ontology (AsD) is developed to capture the 
joining intents of a product. AsD is claimed to serve as a formal, 
explicit specification of assembly design so that it makes the 
assembly knowledge both machine-interpretable and sharable. 

Some industrial efforts have also been devoted to the 
development of the manufacturing related Information Model, 
a notable development in this field is led by NIST. One of their 
work is the NIST’s Core Product Model (CPM), which a unified 

modeling language (UML) based model intended to capture 
the full range of engineering information commonly shared in 
product development [9]. CPM focuses on modeling the general, 
common and generic product information and excludes the 
information which is domain specific. NIST further developed 
another information model called “Open Assembly Model” 
(OAM) [10] which extends CPM. Along with the structural 
information, it represents the function, form, and behavior of the 
assembly, and defines a system level conceptual model.

Recently, NIST also proposed a disassembly information model 
[11]and to the author’s knowledge, this is the first attempt to 
develop disassembly related information model. However, the 
focus of the NIST disassembly information model is on the 
reuse, maintenance, and recycling aspect and the information 
regarding to the disassembly planning is not well addressed. 
Also, the reusability/usability tradeoff problem is not considered 
in the NIST disassembly information model. Lastly, the NIST 
disassembly information model remains in the conceptual stage 
and the implementation under the paradigm of smart product 
and IoT has not been carried out.

Overview of Disassembly Planning Information Model (DIM)

Disassembly information requirement analysis has been carried 
out by the author’s previous research [12]. In general, DIM should 
comprise of the information related to the aspects of product, 
process, uncertainty and degradation and the modelling of 
which involves certain information modeling patterns like n-ary 
relationship, part-whole relationship, etc. On the other hand, 
DIM should also achieve certain balances between IM usability 
and reusability. Thus, a layered modelling methodology has 
been proposed, in which DIM has been subdivided by means of 
layers (Figure 1), with intention to separate general knowledge 
into different level of abstractions. Also, a “minimal ontological 
commitment” [13]guideline is followed, which means each layer 
holds only concepts/relationships and axioms that are essential 
for the function of the current layer.Information that is not 
essential for the layer’s purpose are sourced out to lower layers. 
Details of each layer are presented as follows: 

N-ary relationship Model

Graph Model

Part-whole 
relationship Model

System Model

Abstract Layer

Domain Layer

Application 
Layer

Disassembly Planning 
System Model

Disassembly Sequence Generator Adaptive Disassembly Planner

Product Model

Process Model Degradation Model

Uncertainty Model

 Figure 1: The Overall Structure of DIM
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Abstract Layer: The Information Models in the abstract layer hold 
the fundamental modeling concepts, which are independent of a 
particular problem or domain and can therefore be universally 
applied. They describe the design guidelines (design pattern) for 
the construction of the other sub models in the DIM. Models 
like n-ary relationship, part-whole relationship, graph model and 
system model belong to this layer. 

Domain Layer: The Information Models in the domain layer 
capture the knowledge related to a domain of expertise, such 
as disassembly planning in our case, and they generally don’t 
target on solving a specific problem or task, but rather providing 
a domain knowledge foundation for a range of different 
applications. Thus, the Information Model residing on this layer 
is more specific than those in the abstract layer, but less specific 
than those in the lower layer (application layer). The majority of 
the required disassembly domain information (product, process, 
etc.) are implemented in the models in this layer. 

Application Layer: represents the most specific Information 
Model which is directly usable for a certain disassembly 
planning application. This paper focuses on two disassembly 
planning applications: (1) Disassembly Sequence Generator and 
(2) Adaptive Disassembly Planning.

Such a layered DIM development methodology takes the IM 
reusability-usability trade-off problem into account. The abstract 
or general knowledge is modeled in the sub models located on 
the top layer of the DIM. They provide various design patterns 
which can be reused in various application contexts and 
normally are not directly usable due to the high abstraction. On 
the other hand, knowledge in the models residing on the lower 
layer is ready to be used, but is usually application specific and 
thus hardly to be transferred to other applications.Information 
Models in each layer of the DIM contain knowledge with certain 
degrees of reusability and usability and the usability of the 
knowledge normally increases with descending reusability when 
navigating from the top to the bottom layers of DIM.

In the following sections, DIM sub model “Adaptive Disassembly 
Sequence Planning Information Model” in the application layer 
is presented in detail, other sub models in the abstract and 
domain can be found atZhu [12]. 

Adaptive Disassembly Planning Information Model

This section presents the details related to the Adaptive 
Disassembly Planning Information Model. We start with the 
adaptive disassembly planning problem description in section 
5.1. Next, the requirement for the Adaptive Disassembly 
Planning Information Model, residing on the application layer 
of the developed DIM, is presented in detail in section 5.2. 
Section 5.3 presents detailed Adaptive Disassembly Planning 
Information Model using the UML class diagram as a graphical 
notation. The detailed application algorithm for carrying out the 
sequence generation and optimization process in presented in 
section 5.4. Lastly, section 5.5 verify the application procedure 
with a kitchen exhaust product as a case study. 

Adaptive Disassembly Planning Problem Description 

Adaptive disassembly planning takes all the feasible disassembly 
sequences as input and targets on locating the optimal 
disassembly sequence with consideration of two extra issues as 
follows:

(1) Uncertainty issue: different from the assembly process, the 
disassembly process has various uncertainty issues in nature. 
Thus, extra information and special mechanisms are needed 
for such uncertainty handling. Two types of uncertainties need 
to be addressed in the disassembly planning: (1) Component/
assembly function uncertainty and (2) Operation uncertainty. 

Component/assembly function uncertainty: each component 
or assembly might associate with a primary function, which 
contributes to the product overall function. Such function 
may not be working when the EOL product becomes obsolete. 
Such functioning/non-functioning information is critical in the 
disassembly planning process and can only be revealed gradually 
during the disassembly process. 

Operation uncertainty: during the disassembly process, certain 
operation, such as unscrewing, might not success due to the bad 
component condition like deformation or corrosion. Then, extra 
special operations are necessary to handle such situations, which 
will incur a higher cost. Since this information is also unknown 
at the beginning of the disassembly process, it is called operation 
uncertainty.

(2) Degradation issue: Component/assembly degradation is also 
a critical issue in the planning of disassembly. Degradation is 
a gradual change in the properties (like tensile strength, color, 
shape, etc.) of the component, which usually does not affect the 
overall function of a component until reaching a critical point. 
However, degradation does affect the economic quantification 
of EOL product or component. For example, some subassembly 
might work fine (functional) after the function testing, but the 
reuse value of the subassembly still could be lower than the 
expected average reuse value (the subassembly is close to failure) 
or higher than the expected average reuse value (the subassembly 
still has a long remaining useful life time). 

In order to handle the above two issues, extra information 
is needed and has been identified in DIM domain layer 
sub models (the Uncertainty Information Model and the 
Degradation Information Model) (Zhu July, 2016) . However, 
the determination of the value of some of this information for 
a specific EOL product can hardly be done a priori (e.g. the 
condition of an internal component usually cannot be identified 
at the beginning of the disassembly process). Rather, they are 
revealed gradually with the disassembly process. Thus, an 
“optimal” path is determined at each stage of the disassembly 
process with the limited information supplied and will be re-
evaluated after reaching a new stage with more information 
identified. Thus, it is called adaptive disassembly planning 
problem. 
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Adaptive Disassembly Planning Information Requirement 
Analysis

The required information for handling the uncertainty and 
degradation issue has been identified in the domain level sub 
models, named the Uncertainty Model and the Degradation 
Model. The Uncertainty Model is based on the Bayesian Network 
theory, whereas the Degradation Model is based on the Fuzzy 
Logic theory [12]. From a high level view, the main information in 
both of the models is basically probability theory based statistical 
information, which provides certain degrees of belief in the 
relevant issues. However, in order to make disassembly decision, 
disassembly benefits (utility) and disassembly constraints should 
also be considered and a certain disassembly decision theory 
should be modeled. In this work, disassembly decision theory 
is defined as: 

Disassembly Decision Theory = Probability Theory + Utility 
Theory + Disassembly Constraints

The fundamental idea of the disassembly decision theory is that 
a computer aided disassembly planner is rational if and only 
if it chooses the feasible disassembly action (satisfying all the 
constraints) that yields the highest expected disassembly utility, 
averaged over all the possible outcomes of the action. This is also 
called the principle of Maximum Expected Utility (MEU) in the 
traditional decision theory. 

The realization of the Disassembly Decision Theory yields what 
we called Disassembly Decision Network (DDN) and it can be 
described formally as a six-tuple: DDN= (P-DN, UTN, UN, TR, 
CPT, F), where

Process Decision Node (P-DN): P-DN= {P-DN1, P-DN2, P-DN3…, 
P-DNN}, N>0, is a finite set of process decision nodes denoted by 
rectangle shape. Each of the node can take two possible values 
(“carry out” or “do not carry out”), which represents the two 
choices available to the disassembly process planner regarding to 
a specific process decision. 

Utility Node (UTN): UTN= {UTN1, UTN2, UTN3…, UTNN}, 
N>0, is a finite set of utility nodes denoted by diamond shape 
and they are used to enable the numerical evaluation of decision 
consequences. Two types of the utility nodes are further specified: 

Process Utility Node (P-UTN): represents how much cost is 
associated with a disassembly process. 

Disassembly Object Utility Node (D-UTN): represents how much 
utility is associated with a disassembly object, like component, 
subassembly, etc.The utility can be interpreted as reuse value, 
recycling value or discard cost depending on the disassembly 
context (type of the disassembly object, whether or not the 
component is functioning, whether or not the subassembly is 
further detached, etc.) 

Uncertainty Node (UN): UN= {UN1, UN2, UN3…, UNN}, N>0, is a 
finite set of uncertainty or chance nodes denoted by ellipse shape 
and they are used to represent the random variables related to 

the problem. Two types of the uncertainty nodes are further 
specified:

Process Uncertainty Node (P-UN): represents whether a 
disassembly process is successfully carried out and two values 
are possible for this type of uncertainty node: {“success”, “fail”}. 

Disassembly Object Function Uncertainty Node (D-UN): 
represents whether a disassembly object is performing its 
designed function properly and two values are possible for this 
type of uncertainty node: {“function”, “not function”}. 

Transition Arc (TR): TR= {TR1, TR2, TR3 …, TRN}, N>0, is a finite 
set of directed arcs connecting different types of nodes. The 
intuitive meaning of a transition arc from node X to node Y is that 
X has a direct influence on Y, or there exists a causal relationship 
between X (cause) and Y (effect). Based on the types of the nodes 
to be connected, five types of TRs are further specified as follows: 

Type 1 (P-DN → P-UTN): A transition arc connecting from a 
P-DN to a P-UTN, which describes the influences of a process 
decision on the process utility. In general, if the decision of a 
certain disassembly process is “carry out”, then the utility (cost) 
of the relevant process is set to some negative value. On the other 
hand, if the decision of a certain disassembly process is “do not 
carry out”, the relevant process utility (cost) should be zero.

Type 2 (P-UN → P-UTN): A transition arc connecting from 
a P-UN to a P-UTN, which describes the effect of the process 
uncertainty on the process utility. In general, if the disassembly 
process is successfully executed without problem (the value of 
P-UN is “success”), the process utility (cost) will be set to the 
average process cost. On the other hand, if the disassembly 
process fails, a higher process utility (cost) will be applied. 

Type 3 (D-UN → D-UTN): A transition arc connecting from a 
D-UN to a D-UTN, which describes the effect of the disassembly 
object function uncertainty on the disassembly object utility. In 
general, if the disassembly object is “not functioning”, it means 
this disassembly object cannot be reused and thus the relevant 
utility is set to either the recycle value (if it is a component) or 
discard cost (if it is a subassembly). On the other hand, if it is 
“functioning”, it means the disassembly object can be reused and 
the relevant utility should be set to the reuse value. 

Type 4 (P-DN → D-UTN): A transition arc connecting from a 
P-DN to a D-UTN, which describes the influences of a process 
decision on the disassembly object utility. In general, if a process 
disassembles the disassembly object, then the relevant utility 
is set to zero (the disassembly object doesn’t exist anymore). 
Otherwise, the relevant utility will be set to either the reuse 
value, or the recycling value/the discard cost depending whether 
the disassembly object is functioning properly. 

Type 5 (D-UN →D-UN): A transition arc connecting from a 
D-UN to a D-UN, which describes the function dependency 
between different disassembly objects. As an example, whether 
or not a computer is functioning properly is dependent on the 
functionality of its internal component, like CPU, motherboard, 
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etc. It can be represented as: D-UN CPU→ D-UN Computer, D-UN 

motherboard→ D-UN Computer. 

Conditional Probability Table (CPT): CPT= {CPT1, CPT2, CPT3…, 
CPTN}, N>0, is a finite set of conditional probability tables and 
each which is attached an uncertainty node described above. 
For each node, a CPT represents the conditional probability 
distribution, which quantifies the effect of the parents on the 
node. This is the statistical information, which has been included 
in the Uncertainty Model in the domain layer of DIM. 

Fuzzy model (F):F= {F1, F2, F3…, FN}, N>0, is a finite set of fuzzy 
models and each which is attached to a Disassembly Object 
Utility Node (D-UTN) described above. It is used to quantify the 
degradation of disassembly objects by evaluating its real reuse 
value. The detail information related to the fuzzy model has been 
included in the Degradation Model in the domain layer of DIM.

To summarize, the requirement for the Adaptive Disassembly 
Planning Information Model is to provide information elements 
to support the construction of the Disassembly Decision Network 
described above. Also, some information has been modeled in the 
domain layer sub models like Process Model, Uncertainty Model 
and Degradation Model. Thus, an integration of these models is 
also needed. Table 1 summarizes the modeling requirements for 
the Adaptive Disassembly Planning Information Model. 
Table 1: Requirements for the Adaptive Disassembly Planning Informa-
tion Model

R1 The modeling of different types of node: decision node, 
uncertainty node and utility node

R2 The modeling of five different types of transition arc.

R3 The linking to the uncertainty model and degradation model 
for the retrieval of relevant statistical information. 

Formal Adaptive Disassembly Planning Information Model

The Adaptive Disassembly Planning Information Model deals 
with the information required for the adaptive disassembly 
planning problem. It is residing on the application layer of 
the DIM and is being extended based on three domain layer 
sub models named Process model, Uncertainty Model and 
Degradation Model. The overall structure is shown in Figure 2 
below. We will describe the model according to the information 
requirements identified above in the following sections.

R1->Node Modelling: Based on the definition of the Disassembly 
Decision Network, five classes representing different types 
of nodes have been modeled in the Adaptive Disassembly 
Planning Information Model: (1) class Process_Decision_Node 
representing P-DN, (2) class Process_Utility_Node representing 
P-UTN, (3) class Process_Uncertainty_Noderepresenting 
P-UN, (4) class Disassembly_Object_Function_Uncertainty_
Node representing D-UN, and (5) class Disassembly_Object_
Utility_Noderepresenting D-UTN. 

R2->Transition Arc Modelling: Influences exists between different 
types of nodes and each of which form a certain transition arc 
in the Disassembly Decision Network. From the requirement 
analysis carried out before [12], five types of transition arcs 
are identified and they are being implemented in the Adaptive 
Disassembly Planning Information Model by introducing the 
object property “influence”, which connects two nodes as its 
domain object and range object. 

As shown in Figure 2, three types of transition arcs (Type 1 
to Type 3) have been explicitly defined. As an example, type 1 
transition arc indicates thecausal effect of a process decision 

xsd: double

xsd: double

Process Model

Process_Decision_Node

Process_Utility_Node

Process_Uncertainty_Node

influence

1

1

influence
1

1
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11 relatesTo

DisassemblyObject
Disassembly_Object_Utility_Node

Disassembly_Object_Function
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1

1
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1

1
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1

2..n
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1

1
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contains
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1
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1

1

Uncertainty Model

functionalDepends

1

0..n
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Figure 2: The Adaptive Disassembly Planning Information Model
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(Process_Decision_Node) on the process utility (Process_
Utility_Node). The two relevant nodes are related through the 
object property “influence”:the domain of the “influence” object 
property is the Process_Decision_Nodeclass, which indicates 
the causes, whereas the range of the “influence” object property 
is the Process_Utility_Node class, which indicates the effects of 
the causes. 

A similar approach can be used to model Type 4 and Type 5 
transition arc by introducing the “influence” object property to 
link from the Process_Decision_Nodeclass to the Disassembly_
Object_Utility_Node class (Type 4 (P-DN → D-UTN)); or to 
link from the Disassembly_Object_Utility_Node classto the 
Disassembly_Object_Utility_Node class (Type 5 (D-UN →D-
UN)). However, such approach will yield redundant or duplicate 
information due to the fact that the Type 4 and Type 5 transition 
information have already been implicitly indicated in the domain 
level Process Model and the Uncertainty Model. Thus, we utilize 
semantic rules to transfer such implicit information in the 
Process Model and Uncertainty Model to the explicit Type 4 and 
Type 5 causal information, which can be utilized to construct the 
Disassembly Decision Network.The detail modeling mechanism 
is presented below: 

Modeling of Type 4 (P-DN → D-UTN) Transition Arc: this type 
of transition arc describes the influences of a process decision 
on the utility of the relevant disassembly object. A deep study 
on this transition arc reveals that for a fixed process, the possible 
disassembly objects that can be influenced by it have already 
been modeled in the Process Model: A Process has influences 
on several Disassembly Objects through the object property 
“breaks” and the object property “creates” (refer to [12] fore 
detail description). Thus, the relationship between Process and 
Disassembly Object in the Process Model actually indicates the 

influences of Process_Decision_Nodeon the Disassembly_
Object_Utility_Node.

Thus, we don’t need to explicitly include that relationship in 
the Adaptive Disassembly Planning Information Model, rather 
the following semantic rule (shown in Table 2) has been added 
to transfer the relationship between the Process class and the 
DisassemblyObjectclassin the Process Model to the influence 
of the Process_Decision_Nodeon the Disassembly_Object_
Utility_Nodein the Adaptive Disassembly Planning Information 
Model:

Modeling of Type 5 (D-UN →D-UN) Transition Arc: this type 
of transition arc describes the functional dependency between 
different disassembly objects. Refer to Figure 2, such information 
has already been modeled in the Uncertainty Model through 
“functional Depends” object property. Thus, the following 
semantic rule (shown in Table 3) has been added to the Adaptive 
Disassembly Planning Information Model to transfer the 
information in the Uncertainty Model for representing the causal 
relationship between two Disassembly_Object_Function_
Uncertainty_Nodes. 

R3->Model Integration: the implementation of this requirement 
has been already partially shown in the previous discussion. 
The Adaptive Disassembly Planning Information Model links 
the Process model, Uncertainty model and Degradation model 
through object property “relatesTo”. In detail, the integration is 
implemented in the following four places: 

(1) The Process_Uncertainty_Nodeclassin the Adaptive 
Disassembly Planning Information Model links to the Process 
class in the Uncertainty Model, through which the relevant 
process related Conditional Probability Table (Process Success 
Probability Table) information can be retrieved. 

Table 2: Semantic Rule R1 Definition

Semantic Rule: R1

Antecedent(red line) Consequent (blue line)

Process_Decision_Node(?x), Process_Utility_Node(?y), Process(?z), 
DisassemblyObject(?d), Disassembly_Object_Utility_Node(?u), influence(?x, ?y), 
relatesTo(?y, ?z), (breaks (?z, ?d) or creates (?z, ?d)), relatesTo(?d, ?u)

influence (?x, ?u)

Graphical Explanation 

Process Model
Process_Utility_NodeProcess

11 relatesTo

DisassemblyObject Disassembly_Object_Utility_Node

breaks
1

1

Creates
1

2..n

1 1relatesTo

Adaptive Disassembly Planning
Process_Decision_Node

influence
1
1
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(2) The Disassembly_Object_Function_Uncertainty_Node-
classin the Adaptive Disassembly Planning Information Model 
links to the Disassembly Object class in the Uncertainty Model, 
through which the relevant function related Conditional Prob-
ability Table (Function Failure Probability Table) information 
can be retrieved. 

(3) The Process_Utility_Nodeclass in the Adaptive Disassembly 
Planning Information Model links to the Process class in the 
Process Model, through which regular and special process costs 
can be retrieved. 

(4) The Disassembly_Object_Utility_Node classin the 
Adaptive Disassembly Planning Information Model links to the 
Disassembly Object class in the Process Model, through which 
the related recycle value, reuse value and discard cost can be 
retrieved. 

Adaptive Disassembly Planning Application 

This section discusses the detailed procedure for solving the 
adaptive disassembly planning problem. A high level view of the 
procedure is shown in Figure 3, which is an iterative process with 
two major involved sub-functions (indicated as green boxes in 
Figure 3):

F1->Component/Assembly Reuse Value Estimation. This 
function uses a fuzzy logic based approach for the component/
assembly reuse value estimation. It takes the inputs from the 
human observation and further calculates the reuse value of the 
component or assembly and updates the Disassembly Decision 
Network accordingly. 

F2->Disassembly Decision Making. This function carries out the 
Disassembly Decision Network based sequence optimization. 
It takes two types of information as inputs: (1) the component/

Table 3: Semantic Rule R1 Definition

Semantic Rule: R2

Antecedent 

(red line)

Consequent 

(blue line)

Disassembly_Object_Function_Uncertainty_Node (?x1),

Disassembly_Object_Function_Uncertainty_Node (?x2),

DisassemblyObject(?o1), DisassemblyObject(?o2),

relatesTo(?x1, ?o1),

relatesTo(?x2,?o2),

functionalDepends(?o1, ?o2)

influence (?x1, ?x2)

Graphical Explanation 

Disassembly_Object_Function
Uncertainty_Node ?x1 DisassemblyObject ?o1relatesTo

Disassembly_Object_Function
Uncertainty_Node ?x2 DisassemblyObject ?o2relatesTo

functionalDepends

Uncertainty ModelAdaptive Disassembly Planning

Component/Assembly 
Reuse Value Estimation

(Fuzzy Inferring)

Disassembly Decision Making
(maximize the MEU)

Update DDN:
Reuse value

Human Observation

input Update DDN:
Set Evidence

Optimal Disassembly 
Sequence

Adaptive Disassembly Planning Application 

Carry Out First Step Suggested

Figure 3: High Level View of the Adaptive Disassembly Planning Application
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assembly reuse value (the output of F1) and (2) the human 
observation on whether or not a certain component/subassembly 
is functioning properly. The output will be an optimal disassembly 
sequence, based on the current available information. 

After an optimal disassembly sequence is generated, the 
disassembly operator will carry out the first step in the 
suggested optimal disassembly sequence, which will yield a 
new disassembly state. New observation might be identified in 
the new disassembly state, which could affect both of the sub 
functions (F1 and F2). Thus, F1 and F2 will be re-evaluated 
based on the new observations and a new optimal disassembly 
sequence will be suggested. The whole process will iterate until 
the product is fully disassembled or the optimal disassembly plan 
becomes stable (remain same between iterations). 

The following sections are organized as follows:two sub functions 
(F1 and F2) are discussed in detail in section 5.4.1 and section 
5.4.2 first. Then, section 5.4.3 presents the complete application 
procedure in detail.

Component/Assembly Reuse Value Estimation: The goal of the 
first sub function is to estimate thecomponent/assembly reuse 
value, which is an important information for constructing the 
Disassembly Decision Network. A concrete mathematical model 
to quantify this information is challenging and is very much case 
dependent. Thus, we use the idea of fuzzy inference, a technique 
that facilitates the modeling of a complex system without the 
knowledge of its mathematical description, for the reuse value 
estimation.In general, the fuzzy inference system consists of four 
modules as indicated in the Figure 4 below. 

Mamdani
Inference EngineRule Base

Fuzzy Logic 
Based Reuse Value Estimation

Age Market Demand Condition Parameter

Reuse Value

Fuzzification

De-Fuzzification

Figure 4: High Level View of the Fuzzy Inference System

Fuzzification module: Transforms the system inputs, which are 
crisp numbers, into fuzzy sets by applying the fuzzification 
functions. The system inputs are the critical variables identified 
in the Degradation Model and they are component/assembly 
age, market demand and a set of conditional parameters. It 
is assumed that these variables are sufficient to evaluate the 
component/assembly reuse value. 

Each of the input variable is modelled as a linguistic variable, 
which is a composite data structure containing a set of fuzzy 
terms. Each fuzzy term further contains: (1) a linguistic value 

(values are words in a natural or artificial language, e.g. Age = 
“Low”) which an input variable can take and (2) a membership 
function, which is used to quantify the degree of truth (0 to 1) of 
classifying a certain numerical value (e.g. Age = 2.5 years) into 
the linguistic value (e.g. Age = “Low”) the fuzzy term represents.

The following is the xml code for the “Age”, “Market Demand” 
and “Operation Noise” (condition parameter) linguistic variable. 

<VariableVariableName=”Age”LowerLimit=”0”UpperLimit=”
5”VariableType=”Input”><FuzzyTermName=”Low”Function
Type=”NormalMembershipFunction”Parameters=”0,1.2”></
FuzzyTerm>

<FuzzyTermName=”Medium”FunctionType=”NormalMembe
rshipFunction”Parameters=”2.5,1”></FuzzyTerm><FuzzyTer
mName=”High”FunctionType=”NormalMembershipFunctio
n”Parameters=”5,1.2”></FuzzyTerm>

</Variable>

<VariableVariableName=”OperationNoise”LowerLimit=”0”Up
perLimit=”50”VariableType=”Input”>

<FuzzyTermName=”Normal”FunctionType=”NormalMember
shipFunction”Parameters=”0,13”></FuzzyTerm>

<FuzzyTermName=”Abnormal”FunctionType=”NormalMemb
ershipFunction”Parameters=”50,13”></FuzzyTerm>

</Variable>

<VariableVariableName=”MarketDemand”LowerLimit=”0
”UpperLimit=”200”VariableType=”Input”><FuzzyTermNa
me=”Low”FunctionType=”NormalMembershipFunction”
Parameters=”0,50”></FuzzyTerm><FuzzyTermName=”Hig
h”FunctionType=”NormalMembershipFunction”Paramete
rs=”200,52”></FuzzyTerm>

</Variable>

Knowledge base: stores IF-THEN rules provided by experts. In 
this dissertation, four general rules related to the high reuse 
value and low reuse value are modeled: 

Low Reuse Value Rule

R1: Age is High => Reuse Value will be Low 

R2: Market Demand is Low => Reuse Value will be Low 

R3: Condition Parameter is Worse => Reuse Value will be Low 

High Reuse Value Rule

R4: Age is Low and Market Demand is High and Condition 
Parameter is Normal => Reuse Value will be High

Other customized rules can be added if needed and they can be 
acquired from the Degradation Information Model. An example 
is shown below: 

Average Reuse Value Rule

Age is Medium and Market Demand is High and Condition 
Parameter is Normal => Reuse Value will be Average
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Inference engine and Defuzzification: Fuzzy inference engine is 
the main decision making module in a fuzzy inference system. Its 
main operation is to convert the input fuzzy set into output fuzzy 
set through an inference process. Whereas, the defuzzification 
process transforms the fuzzy set obtained by the inference engine 
into a crisp value.

In this work, we use the popular Mamdani method for 
implementing the inference procedure and the details of the 
Mamdani method can be found here[14]. The defuzzification 
process is based on the idea of “Centroid of Area”, which returns 
the center of the area under the aggregated curve. If you think of 
the area as a plate of equal density, the centroid is the point along 
the x axis about which this shape would balance. 

The sub function is implemented in Matlab and Figure 5 shows 
the implementation of the method for the reuse value estimation 
of subassembly ABCD.

 Figure 5: Fuzzy Influence Implementation in Matlab

As shown in Figure 5, the crisp input is [age= 3, Operation 
Noise=25, Market Demand=100]. Five fuzzy control rules are 
defined (four general and one customized, not shown in the 
Figure) and each will generate the fuzzy value of the output 
variable (ABCD reuse value). The five generated fuzzy values 
will then be aggregated and further again be translated into crisp 
value, the final inferred result is 40.1 (reuse value of subassembly 
ABCD).

Disassembly Decision Network based Disassembly Planning:  
This section introduces a Disassembly Decision Network based 
adaptive disassembly planning approach, which integrates 
the Bayesian probability theory and the maximum expected 
utility (MEU) principle, for dynamically generating the optimal 
product disassembly sequence.

The determination of optimal disassembly sequence is to decide 
the value of each of the Process Decision Node (P-DN), which can 
yield a maximum disassembly object utility and a minimum the 
process utility (cost).If we annotate  as one possible disassembly 
sequence, then  can be expanded as follows: 

{ }1, 2, 3, ,, ,i i i i i N id pDN pDN pDN pDN pDN= = …

Where is short for P-DN. The first subscript represents the 
index of the process decision node in the Disassembly Decision 

Network, whereas the second subscript indicates the decision 
value (“carry out” or “do not carry out”) associated to that node. 

Then, the expected utility (EU) of a disassembly plan  is given by:
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,p jpUN represents the Process Uncertainty Node in DDN. The 
first subscript represents the index of the process uncertainty 
node in the Disassembly Decision Network, whereas the second 
subscript indicates the uncertainty value (“fail” or “success”) 
associated to that node. 

,p jpUN  represents the Process Utility Node in DDN. The subscript 
represents the index of the process associated to that node.  can 
take different values depending on the arguments and .

,o jdUN represents the Disassembly Object Function Uncertainty 
Node in DDN. The first subscript represents the index of 
the Disassembly Object Function Uncertainty Node in the 
Disassembly Decision Network, whereas the second subscript 
indicates the uncertainty value (“function” or “not function”) 
associated to that node. 

,o jdUN  represents the Disassembly Object Utility Node in DDN. 
The subscript represents the index of the disassembly object.  can 
take different values depending on the arguments and .

e is set of evidence identified during the disassembly process. 

The above equation describes the expected utility (EU) of a 
disassembly option  given a set of evidences. It is an aggregation 
of two parts: (1) the expected utility of the disassembly process 
and (2) the expected utility of the disassembly object. Both of the 
parts are evaluated by calculating the summation of the relevant 
utilities, weighted over the probability values of the relevant 
uncertainty node.

In order to calculate the probability values like P(dUNo,j)|e and 
P(pUNp,j)|e Bayes rules are used here. In general, the basic task is 
to compute the posterior probability for a set of query variables 
(X) (in our case X is either dUNo,j or pUNp,j), given some observed 
event—that is, some assignment of values to a set of evidence 
variables (e).

( ) ( )
( ) ( ) ( ),

| , , ,
y

P X e
P X e P X e P X e y

P e
α α= = = ∑  

Y denotes the non-evidence, non-query variables Y1, Y2. . . 
, Yl(called the hidden variables) and  is the normalization 
constant. 

Finally, the best decision D*, given the probability distribution 
and the utility model is given by: 

D*=max EU(di|e)

The above equation indicates that the optimal disassembly 
sequence, is a decision sequence which maximizes the EU(di|e).

Complete Adaptive Disassembly Planning Procedure: The 
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disassembly sequence (disassembly plan) generated above can 
only be considered “optimal” at the current disassembly state, 
in which only limited information or evidence can be identified. 
Carrying out one disassembly operation according to the plan 
puts forward the disassembly object to a new state with possibly 
more evidences revealed, which can change the “optimal” 
disassembly result generated by the DDN based Disassembly 
Planning function. Thus, the complete adaptive disassembly 
planning procedure is developed here (Figure 6) to iteratively 
generate optimal disassembly sequence. 

When an EOL product is taken into the disassembly facility, 
function testing is going to be applied first, which will provide 
certain evidences on whether certain component/assembly 
is working properly or not. Notice that the function testing at 
this stage can only provide the functionality information about 
some of the components or assemblies. Whether or not the 
other components or assemblies are functioning properly is 
still an uncertainty to the disassembly operator. However, the 
probability of them to be functioning is updated based on the 
updated evidence. As an example, if the disassembly operator 
identifies that a fan assembly is functional and updates that 
information to the DDN as evidence, the probability of the 
motor to be functioning will be changed as follows: 

P(Motor = functioning) → P(Motor=functioning | Fan Assembly = 
functioning)

Next step is to update the component/assembly reuse value in 
the DDN using the first sub function (f1: fuzzy logic based reuse 
value estimation), based on the identified age, market demand 

and conditional parameter information. 

The updated DDN will be sent to the second function (f2: DDN 
based disassembly optimization), which will generate an optimal 
disassembly sequence D*, given the current available identified 
information. 

The disassembly operator will take the first operation (d’) 
suggested in the D* to be the candidate disassembly operation 
at this stage. Another observation will be carried out to check 
whether d’ can be successfully executed without problems. If d’ 
can be successfully carried out, no updates in DDN are necessary 
and d’ will be physically executed by the disassembly operator, 
which will yield a new disassembly state. Lastly, the process will 
re-route back to the beginning (function testing) and be applied 
to the new state. 

On the other hand, if d’ cannot be successfully carried out, an 
operation status update (status of d’=fail) is added to the DDN. 
With the new updated DDN, the optimization process (f2) is 
carried out again. Two possible scenarios can happen: (1) a new 
D* will be generated to avoid d’ and (2) same D* which insisting on 
carrying out the original d’. The first scenario is straightforward, 
which indicates that the cost of executing d’, given the evidence 
the regular operation will fail, is not cost effective and should 
be avoided. On the other hand, the second scenario indicates 
that even though d’ fails using the regular operation, some 
special operation (possibly with higher operation cost) should 
be applied, because the overall utility is still optimal compared 
to the other options.Lastly, same as the before, after carrying out 
one disassembly operation, either following the original d’ or 

Observation:
Function Testing

Update Evidence:
Function Status

Update Component/
Assembly Reuse Value 

DDN based 
Optimization

f1: fuzzy logic based 
reuse value estimation

f2: DDN based 
Disassembly Optimization

Observation:
Operation Succeed?

Carry out 
Operation d’

yes No

D*

Take the current first 
operation (d’) in the D*

Operation Status 
Already Updated?

Yes

Update Evidence:
Operation Status

No

f1

f2

Figure 6: The Complete Adaptive Disassembly Planning Procedure
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following the new d’, a new disassembly state is being reached. The 
process will re-route back to the function testing step (beginning 
of the procedure), which will be applied to the new state. 

5.5 Adaptive Disassembly Planner Application Verification 

This section verifies the adaptive disassembly planning 
application using a kitchen exhaust fan assembly. We start with 
the description of the case study in section 4.5.1. The disassembly 
decision network for the case study is presented in section 4.5.2. 
Lastly, the detailed adaptive disassembly decision making process 
is verified in section 4.5.3. 

Description of the Case Study: Figure 7 shows the pictorial 
presentation of the case study product, which contains four 
components (A->D) and one assembly (ABCD). Since all of 
them are associated with a designed function, they thus can 
have a reuse value after being disassembled. We call these type of 
disassembly objects module here. 

On the other hand, three other subassemblies (BCD, BC and 
BD) exist only in the context of disassembly and they merely 
represent a stable state in the disassembly process and they don’t 
have a designed function associated with them (i.e. they are not 
subassembly in the context of the assembly process). Thus, these 
type of disassembly objects don’t have a reuse value. The utility 
related information is listed in Table 4 and table 5 below.

Table 4: Utility Information Regarding to the Disassembly Object

Disassembly Object Reuse Value Recycle Value Discard Cost

ABCD 55 N/A -10

BCD N/A N/A -5

BC N/A N/A -10

BD N/A N/A -5

A 22 N/A -15

B 10 3 N/A

C 15 2 N/A

D 10 4 N/A

Table 5: Utility Information Regarding to the Disassembly Process

Operation Regular Operation Cost Special Operation Cost

t1 -5 -10

t2 -8 -16

t3 -5 -20

t4 -10 -15

t5 -8 -15

Notice that in Table 2, there is no reuse value attached to for 
BC, BD and BCD because they do not have a designed function 
and they are only valid in the context of disassembly. Also, 
components B, C and D contain only homogeneous material, 
and thus they can always be recycled and no discard cost is 
assigned to them. 

Another important information regarding this case study is the 
process model related to the product, which represents all the 
feasible disassembly sequences. It is shown in Figure 8 below, 
using the petri net as a pictorial notation.

Figure 8: Feasible Disassembly Sequences of the Kitchen Exhaust Fan 
Assembly

Figure 7: Kitchen Exhaust Fan Assembly
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Last but not least, the incoming product has two specific 
uncertainty issues, which are unknown to the disassembly 
operator in the beginning of the disassembly process: 

(1) Blower Wheel is not rotating (i.e. ABCD is not functioning).

(2) Operation t3 cannot be executed in as a regular approach, 
some special process is needed. 

Disassembly Decision Network for the Kitchen Exhaust Fan 
Assembly: Figure 9 shows the disassembly decision network 
for the kitchen exhaust fan assembly. In order to present it more 
concisely, the network has been partitioned into different sub 
models. On the top level, the disassembly decision network 
contains only two sub model: (1) process model and (2) Bayesian 
net model. The process model contains the information related 
to the disassembly object utility (node ABCD_V, A_V, etc.) and 
several operation sub models. Operation sub model is further 
an aggregation of the process utility, the process uncertainty and 
the process decision information. The Bayesian net sub model 
contains the disassembly object uncertainty information. 

The model in the Figure 9 is a realization of the definition of 
DDN. Five types of nodes and five types of transition arcs are 
instantiated for the kitchen exhaust fan assembly, specifically 
they are: 

Process Decision Node (P-DN): nodes “Operation1”, “Operation2”, 
etc. 

Process Utility Node (P-UTN): nodes “t1_C”, “t2_C”, etc.

Disassembly Object Utility Node (D-UTN): nodes “ABCD_V”, 
“BCD_V”, “BD_V”, etc. 

Process Uncertainty Node (P-UN): nodes “Operation_1_Result”, 
“Operation_2_Result”, etc.

Disassembly Object Function Uncertainty Node (D-UN): nodes 
“ABCDFunctionCondition”, “AFunctionCondition”, etc. 

Transition Arc (Type 1: P-DN → P-UTN): e.g. arc pointing from 
node “Operation2” to node “t2_C”.

Transition Arc (Type 2: P-UN → P-UTN): e.g. arc pointing from 
node “Operation_2_Result” to node “t2_C”.

Transition Arc (Type 3: D-UN → D-UTN): e.g. arc pointing from 
node “ABCDFunctionCondition” to node “ABCD_V” (the arc is 
not shown in Figure 9).

Transition Arc (Type 4 P-DN → D-UTN): e.g. arc pointing from 
node “Operation1” to node “ABCD_V” (the arc is not shown in 
figure 9).

Transition Arc (Type 5 D-UN →D-UN): e.g. arc pointing from node 
“AFunctionCondition” to node “ABCDFunctionCondition”.

Also, conditional probability tables (CPT) are assigned to the 
relevant nodes. Figure 10 shows the user interface to input the 
CPT for both disassembly object function uncertainty node and 
process uncertainty node.

Lastly, the utility information (both for the disassembly object 
utility and the process utility) needs to be defined in the DDN. 
The process utility is relatively straightforward and it is based 

Process Model

Operation Sub Model

Disassembly 
Decision Network

Bayesian Net

Figure 9: The Disassembly Decision Network of the Kitchen Exhaust Fan Assembly
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Function Conditional Probability Table for ABCD Process Conditional Probability Table for 
Operation2  

Figure 10: CPT Definition Example

on whether or not the operation is going to be carried out and 
whether or not the regular operation will success. Figure 11 
shows an example of the utility definition for operation 5. As it 
is clear from Figure 11, the utility (cost) of operation 5 is zero 
under the condition that operation 5 is not carried out. On the 
other hand, if operation 5 is to be carried out, the utility (cost) 
will be either -8 (regular cost) or -15 (special cost), depending on 
whether or not operation 5 will be executed successfully without 
a problem. 

The definition of disassembly object utility is classified into two 
categories: (1) the disassembly object is only a stable state and (2) 
the disassembly object is a module. 

If the disassembly object represents a stable state, like the case for 
the subassembly BCD (Figure 8), the only variables influencing 
the utility are the operation decision nodes pointing to it. If 
we have 3 influencing operation decision nodes and each of 
which can take two decision values (“carry out” or “do not carry 
out”), we can have 23=8 possible combinations. Each of the 

 
Figure 11: Process Utility Definition Example

 

Figure 12: Disassembly Object Utility Definition Example
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combination will be assigned a utility value (either discard cost 
or recycling value).Some combination is realistically impossible, 
such as carrying out operation 1, 2 and 3 in the example in Figure 
12. The utility of such cases will be set to a maximized negative 
number (-10000), which insures that it will not be selected as the 
optimal disassembly path. Some of the combination will yield a 
zero utility, which means the subassembly is further disassembled 
into smaller components and thus there is no utility (revenue or 
cost) associated with that.

Similar mechanism applies to the module type disassembly 
object, with only one extension: the function uncertainty node 
has an effect on the utility. If the module is functioning, reuse 
value could be applied to the utility value, otherwise the discard 
cost or recycling value will be applied. 

Adaptive Sequence Generation for the Kitchen Exhaust 
Fan Assembly: The section verifies the adaptive disassembly 
sequence generation application using the kitchen exhaust 
fan assembly. The user interfaces of the developed adaptive 

disassembly planning application are shown in Figure 13 below. 

Running the application using the kitchen fan assembly by 
following procedure defined in Figure 6, the following adaptive 
results are generated as shown in Table 6 below.

The application can also handle the component/assembly 
degradation issues, if assuming subassembly ABCD is 
functioning. We want to know exactly how much reuse value 
should be applied for ABCD in the DDN, the fuzzy model for 
ABCD is going to be used. By observing the crisp values of the 
input variables (age=2.5 years, market demand=30 units and 
operation noise=10 decibels), the reuse value of ABCD will 
be generated (Figure 14), which indicates a lower value (32.6) 
compared to the average reuse value (55). This new value will be 
sent back to update the DDN. The whole process afterwards will 
be similar to that shown in Table 6. 

Figure 14: Reuse Value estimation for ABCD when Considering Degra-
dation

Loading Disassembly Decision Network

Fuzzy Logic Based Reuse Value Estimation and DDN Updates

Detail User Interface for uncertainty handling and Plan generation

Evidence Updates

 
Figure 13: User Interfaces for the Adaptive Disassembly Planning Application
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Table 6: Adaptive Disassembly Plan for the Kitchen Fan Assembly

Stage D* Explanation

Initial Stage 
(No observation)

Do not Carry out any disassembly operation, 
retain the assembly ABCD, which will yield an 
optimal expected utility 15.48.

Stage 1: 
Function testing->
ABCD is not functioning

After function testing, the evident that ABCD 
is not functioning is updated to the DDN, a 
new D* is generated, which indicates to carry 
out operation 1, operation 3 and operation 5. 
This plan will in the end retrieve component 
A, B, C and D with a possible expected utility 
6.38 

Stage 2: Take the current op-
eration in D* (Op1) as candi-
date and check whether it can 
be executed successfully ->
Op1 can be executed success-
fully

Since Op1 can be executed successfully, the 
generated D* will remain same. However, 
the expected utility is increasing from 6.38 to 
7.38 due to the new evidence.

Stage 2: Take the current op-
eration in D* (Op3) as candi-
date and check whether it can 
be executed successfully ->
Op3 can’t be executed suc-
cessfully

The evidence that Op3 can’t be executed 
successfully is updated to the DDN, a new D* 
is generated. It suggests to carry out opera-
tion 1, followed by operation 2 and operation 
4, which will avoid the failed operation Op3. 
The expected utility is 2.18 in this stage. 

Both of the two uncertain-
ties have been identified at 
this point, thus the plan from 
stage 2 will be the final plan 
(No change will happen to D* 
from this stage)

Conclusion and Future Work 

This paper presents Disassembly Planning Information Model, 
which constitutes a layered information framework designed for 
multiple applications in the domain of EOL product disassembly 
planning. DIM is hierarchically structured by layers, which 
divide the associated Information Models into different levels of 
abstraction, and thus, separate the general knowledge from the 
specific knowledge about particular domains and applications. 
A set of sub models is thus developed and classified into three 
different layers named the abstract level, the domain level and 

the application level. The developed DIM is applied to the 
adaptive disassembly planning problem to validate the usability 
and reusability performance regarding the DIM.

While this work has demonstrated the utilization potentials of 
applying the DIM in the domain of disassembly planning, many 
opportunities for extending the scope of this thesis remain. This 
includes: (1) promoting the DIM into a reference model, (2) 
applying more disassembly planning related applications to the 
DIM and (3) integrating DIM with current IoT infrastructure.
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