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Abstract
 Thermal load in manufacturing processes is of special interest 
as it is closely connected with the surface integrity and life-cycle 
of the finished product. Especially in grinding, heat affected 
zones are created due to excessive heat dissipated within the 
workpiece during the process. In these zones, defects are created 
that undermine the quality of the workpiece and as grinding 
is a precision finishing operation, may render it unsuccessful. 
Grinding forces and temperatures are usually studied in 
relation to the heat affected zones. However, their experimental 
estimation or analytical evaluation may prove laborious and 
costly. Thus, simulation and modeling techniques are commonly 
employed for the prediction of these parameters and through 
them the performance evaluation of the process is performed. 
In this paper, statistical methods and soft computing techniques, 
namely regression models completed with analysis of variance, 
and artificial neural networks respectively, are presented for 
the estimation of grinding forces and temperature. A brief 
description of the models and a comparative study is performed, 
based on experimental results. Both modeling tools prove to 
be quite successful, predicting with high accuracy forces and 
temperatures. 

Keywords: Statistical regression analysis; Artificial neural 
networks; Grinding; Forces and temperatures; Analysis of 
variance.

Introduction
Grinding is a manufacturing process of great importance in 
contemporary industry. It is mainly used as a finishing operation, 
because of its ability to produce high workpiece surface quality. 
It is also used in bulk removal of material, maintaining at the 
same time its characteristic to perform precision processing and 
opening new areas of application in today’s industrial practice. 
However, the energy per unit volume of material being removed 
from the workpiece during grinding is significant. Grinding 
forces are essential for calculating grinding energy, which in 
turn is almost entirely converted into heat, causing a rise of the 
workpiece temperature and, therefore, thermal damage. This heat 

input is responsible for a number of defects in the workpiece like 
metallurgical alterations, microcracks and residual stresses [1]. 
High surface temperatures are connected to these phenomena 
and may lead to grinding burn. The areas of the workpiece that 
are affected are described as heat affected zones. 

The prediction of grinding forces and workpiece temperatures 
is considered useful for the assessment of the heat affected 
zones, for avoiding defects on finished products and the 
optimization of the manufacturing process. Nevertheless, 
grinding is characterized by complex relationships between 
process parameters, workpiece and cutting tools characteristics 
as well as quality features of the finished products. Furthermore, 
certain difficulties arise when experimentally measuring surface 
temperatures during grinding, mainly due to the set-up of the 
process. A lot of research pertaining to grinding is performed 
through modeling and simulation instead of experimental 
investigation [2]. Although most of the mentioned papers in 
the relevant literature pertain to Finite Element Method (FEM) 
models, other types of modeling methods have been reported, e.g. 
Artificial Neural Networks (ANNs) [3]. Furthermore, statistical 
and soft computing techniques have been employed for the 
prediction of the performance of manufacturing processes with 
success [4]. 

In the current study, statistical regression analysis models are 
employed to fit experimental data from grinding processes 
with various types of grinding wheels and workpiece materials, 
at various depths of cut. The accuracy of regression models is 
estimated and statistical analysis is employed to determine the 
validity of the regression model. Then, the results are compared 
to the results of a similar analysis conducted with Artificial 
Neural Networks models. Conclusions about the effectiveness of 
the application of regression models to grinding can be drawn, 
as well about its predictive accuracy compared to the accuracy of 
an artificial neural network. 

Artificial Neural Networks and Regression models
In this section, a brief introduction to the artificial neural 
networks and statistical regression models is presented, with a 
view to clarify the basic aspects of these two methods.
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Artificial Neural Networks

Artificial neural networks constitute one of the most widely 
used soft-computing methods in many scientific fields. Artificial 
neural networks have been extensively used to model machining 
processes and optimize their operating conditions [5-10]. 
Essentially, neural networks are statistical learning algorithms 
whose characteristics originate from biological neural networks 
e.g. the nervous system of animals. A system similar to the actual 
biological neural networks is created, consisting of various levels 
of interconnected neurons which are employed to approximate 
the behavior of a system whose function cannot be easily 
described with a suitable set of physical laws and equations or is 
generally unknown to the researcher, but a set of inputs and their 
related outputs is available. Each neuron constitutes essentially a 
node of the network and acts as a data processor receiving inputs, 
processing them and transforming them to appropriate outputs 
using a suitable function, called the activation function.

The simplest type of neural networks is the feed-forward neural 
network, as it can be seen in Figure 1. 

According to the interconnections between the various levels of 
neural networks, in such a network, the data is processed from the 
input layer to the output layer remaining only in one direction. 
Intermediate levels, called hidden layers, also exist and allow for 
the data to be further processed before it eventually reaches the 
output layer. The determination of the number of hidden layers 
and the number of neurons in each layer is usually a result of 
experimentation with various possible configurations with a 
view to find the network structure that leads to more accurate 
estimations of the desired results. Appropriate numerical values 
called weights are assigned to each connection between neurons. 
So, the output values for each neuron are obtained as follows: 
each input signal is multiplied by the relevant weight and these 
values are summed to form the total input. Then this value is 
transformed into output using the activation function of the 
neuron. Usually, this function is sigmoid and thus yields an 
output within the range 0-1. To the input signal a bias term, 
which represents a threshold value, is added. 

After the architecture of the neural network is properly 
determined, the training of the network takes place. Essentially, 
the training stage of the algorithm consists of the determination 
of the value of each weight. Before the training process starts, the 
weights are initialized randomly. For the training, a proportion 
of the total available experimental results is used. Usually the 
backpropagation method is employed in order to train the 

network by propagating the error of the estimated results from 
the output level to the input level. The backpropagation process 
is implemented by various algorithms such as: Levenberg-
Marquardt, BFGS quasi- Newton, conjugate gradient, secant 
method and others. 

In the backpropagation process, the error in the output layer is 
first computed and then using the appropriate weight values, error 
calculations are performed to the previous layers until the input 
layer is reached. This error values are used for the calculation of 
the error derivative and the determination of the new weights. 
In the next step or epoch as is usually termed, the network is fed 
forward and this process carries on until the termination criteria 
are met. In order to test the validity and the generalization ability 
of the algorithm, other sets of experimental values are preserved 
to be used in the validation and test stages of the network before 
it can be employed as a predictive tool. Usually, the Mean Square 
Error (MSE) is calculated at each epoch and the simulation is 
terminated when the MSE value does no longer descent.

Statistical regression models

 Statistical regression is a general process employed to determine 
the relationships of some input variables and their outputs in 
a studied system. Regression models are utilized generally to 
describe the relationship between one or more independent 
variables with the dependent variables by means of a function, 
called the regression function. Appropriate statistical methods 
are used to determine the variation of the measured dependent 
variable around the computed regression function and estimate 
its efficiency. Regression models are often employed as a 
predictive tool for a variety of systems.

Generally, the regression models can be divided into two 
categories according to the type of regression function employed 
in the analysis: linear and non-linear regression models. In 
linear regression models, the regression function is required to 
assume the dependent variables as a linear combination of the 
combination parameters, as it can be seen in equation (1):

у = β0+β1X1+β2X2+..... βpXp +ε                                                        (1)

 
where y is the dependent output variable, βi is the i-th coefficient 
and β0 is the constant term in the model, X is the independent 
input variable and ε is a general noise term. Nevertheless, the 
dependent variables can be a non-linear combination of the 
independent variable, as it can be seen in equation (2):

                                    (2)

Where f is a scalar function of the input values, that can include 
non-linear terms but linearity in terms of coefficients βk is not 
violated. The term simple linear regression is often employed in 
cases with a single independent variable, while the term multiple 
linear regression is used in cases involving more than one 
independent variables. The experimental results are fitted to the 
regression model using an appropriate minimization technique.

In the case of non-linear regression models, the regression 
function is essentially a non-linear combination of the 
regression parameters. Commonly, the non-linear models are 
employed in cases where the experimental results are assumed 

Figure 1: The structure of a feed-forward neural network
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to vary according to a specific law e.g. power law, exponential 
law. Therefore, the regression function has a similar form so 
that along with the estimated parameters the model will yield 
more precise results. In several cases, these non-linear functions 
can be linearized and then processed in the same way as linear 
regression functions. 

The fitness of the results to the regression function can be tested 
using appropriate measures such as: the multiple correlation 
coefficient R, the coefficient of determination R2, the adjusted R2 
and the root mean squared error. The most widely used coefficient 
is the R2, which indicates the fraction of the variability observed 
in the predicted results and can be observed in equation (3): 

                                                                 (3)           
where yi are observed data with predicted value of fi, y  
denotes the mean of the observed data and the nominator and 
denominator of the above fraction represent the residual sum of 
squares and total sum of squares, respectively. Although the use 
of some of these measures cannot be performed in non-linear 
regression, similar measures can assess the validity and precision 
of non-linear models. At last, the statistical analysis of variance 
(ANOVA) test can be conducted to assert the validity of the 
results and the regression model. In manufacturing, there are 
various cases where regression models have been employed to 
model machining processes and their parameters [11-15].

Methodology
The purpose of the current study is to test various linear 
regression models with a view to predict the tangential force and 
maximum temperature in grinding. In a previous study [16], a 
number of grinding experiments were conducted with different 
grinding wheels, workpiece materials and depths of cut. For the 
experiments, a surface grinding machine was employed, as it can 
be seen in Figure 2. 

Three different workpiece materials were used in the experiments, 
namely 100Cr6, C45 and X210Cr12 steels. The six aluminum 
oxide grinding wheels have a diameter of 250 mm, width of 20 
mm and different bonding. The wheel speed was kept constant at 
28 m/s and four different depths of cut were employed, namely 
10, 20, 30 and 50 μm. The maximum temperature results were 
obtained from a FEM heat transfer simulation conducted using 
the Jaeger model [16]. In Jaeger’s model the grinding wheel is 
represented by a heat source moving along the surface of the 
workpiece with a speed equal to the workspeed. The heat source 

is characterized by a physical quantity, the heat flux, q, that 
represents the heat entering the workpiece per unit time and area 
and it is considered to be of the same density along its length, 
taken equal to the geometrical contact length, lc, as it is described 
in Figure 3.

After the conduction of the experiments, a feed-forward neural 
network with three input neurons, one output neuron and one 
hidden layer with 5 neurons was proposed for the prediction of 
the tangential grinding force and maximum surface temperature. 
The input data was suitably normalized before they were fed 
to the network. The hyperbolic tangent sigmoid function was 
employed as activation function and the Levenberg-Marquardt 
algorithm as the learning algorithm [16]. In the current study, 
a regression analysis model is developed to study the tangential 
force produced in the grinding process and the maximum 
temperature on the workpiece. The input parameters, i.e. the 
independent variables, are chosen to be similar to the parameters 
chosen in [16], with a view to conduct a comparison between the 
two methods. Furthermore, variables are quantified based on the 
properties of the grinding wheel and the workpiece materials. 
More specifically, grinding wheel grain size and workpiece 
material hardness are used. For the determination of workpiece 
materials’ hardness, appropriate tests are conducted. The 
corresponding values of hardness for each material designated 
in [16] as 1 to 3 are 250HV for 100Cr6, 210HV for C45 and 
265HV for X210Cr12, respectively. The corresponding grain 
size for grinding wheels 1 to 6 are 180, 100, 90, 150, 120 and 
80, respectively. However, in order to facilitate the comparison 
between regression models and ANN, the inputs are presented 
in the respective tables in the sense of encoded variables. Finally, 
in order to reduce undesired effects related to the magnitude of 
the values of each factor, normalization is performed to all input 
values before they are inserted in the regression model. 

The type of regression chosen is linear regression. Although the 
choice of a linear regression model seems at first not appropriate 
to model a complicated problem, it is considered that it would 
be more suitable to use a less complicated model as there is no 
evidence of the type of relationship between the input parameters 
that dictates the use of a specific non-linear regression model. 
Thus, two different linear regression models are employed 
in this study, namely a first order model, and a second order 
model. After each model is fitted, an analysis of variance test is 
conducted. Furthermore, the results concerning these models and 
the comparison of the results to the ANN results are discussed. 
The set of results chosen for the comparison between regression 

Figure 3: Jaeger’s model in grinding

Figure 2: Surface grinding machine
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models of first and second order and between regression models 
and ANN is the same in every case.

Results and discussion
Statistical regression analysis 

 In this subsection the results obtained from the linear regression 
models are presented and discussed. For both the regression 
analysis models created in this paper and the artificial neural 
networks created in reference work [16], the corresponding 
toolboxes of Matlab were used.

First order model

A simple first order model is assumed in each of the two 
aforementioned cases, namely for the prediction of tangential 
force and maximum temperature. The details about the model 

are summarized in Table 1, along with results obtained from the 
regression process. As it can be seen in Table 1, interaction terms 
between the various parameters are not taken into consideration. 
Furthermore, regression models were found to be statistically 
significant, as well as its coefficients, in both the tangential force 
and temperature models.

In Table 2, a comparison between experimental and predicted 
results is made. It is obvious that the performance of the model 
can be characterized as moderate. In the case of forces the 
discrepancies between experimental and predicted results are 
above 10% in the majority of examples. The results are worst 
in the case of temperatures; the discrepancies between FEM 
and regression analysis results quite higher. The first order 
model overestimates the maximum temperature, indicating an 
unsuccessful fitting. 

Table 1: Results concerning the fitting of the first-order model in the two cases

Model type = b0 + b1 x1 + b2 x2 + b3 x3 Output = tangential force

Estimated coefficients

Estimate SE t-value p-value

Intercept (b0) -1.1311 0.11369 -9.9486 6.7414e-15

b1 -0.11407 0.052223 -2.1843 0.032388

b2 1.4418 0.11631 12.396 4.0942e-19

b3 0.52905 0.034445 15.359 8.5e-24

Number of observations : 72 Error DOF : 68

RMS error : 0.0865 R-squared : 0.853

Adjusted R- squared : 0.846 p – value : 3.06e-28

Model type = b0 + b1 x1 + b2 x2 + b3 x3 Output: maximum temperature

Estimated coefficients

Estimate SE t-value p-value

Intercept (b0) -1.4125 0.12996 -10.868 1.6295e-16

b1 -0.15096 0.059698 -2.5287 0.013775

b2 1.9971 0.13296 15.02 2.7564e-23

b3 0.34012 0.039375 8.6379 1.5247e-12

Number of observations:72 Error DOF: 68

RMS error : 0.0988 R-squared: 0.818

Adjusted R- squared : 0.81 p-value:3.84 e-25

Table 2: Comparison of predicted results with experimental results in both cases

Output variable: tangential force (N/mm)

Process parameters Results

Grinding Wheel Workpiece material Depth of cut (μm) Experimental result Predicted value Difference (%)

3 1 50 10.66 12.5581 17.81

6 1 30 7.23 8.8815 22.84

3 3 50 16.09 14.0198 12.87

6 3 30 11.05 10.3432 6.40

Output variable: maximum temperature (oC)

Process parameters Results

Grinding Wheel Workpiece material Depth of cut (μm) Computed result (FEM) Predicted value Difference (%)

1 1 50 688.6 779.0447 13.13

3 1 50 748.0 868.0333 16.05

6 1 30 631 850.8015 34.83

2 3 30 1074 831.0262 22.62
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Moreover, in order to assess the validity of the first order 
model, plots of the regression residuals are constructed and 
observations are conducted. Plots depicted in Figure 4 and 
Figure 5 are considered as useful diagnostic tools for the analysis 
of regression models’ results. In case of regression models it is 
required that the error terms are independent and no correlation 
exists between them; in the opposite case that would mean that 
the error terms contain predictive information for which the 
regression model could not adequately account. In Figure 4 
the residual plots for the tangential force model are presented. 
The normal probability plot is useful in order to determine if 

the error terms are normally distributed. If these terms follow 
a normal distribution, the relationship between the theoretical 
percentiles of the normal distribution and the observed sample 
percentiles should be linear. At first, it can be observed that there 
are clearly some deviations from the linear curve in this case. 
A modified Shapiro-Wilk statistical test was then conducted, in 
order to determine the normality of error terms distribution. The 
null hypothesis in this statistical test states that a population is 
normally distributed. The results of the test indicate that the null 
hypothesis for this case is accepted, as a p-value of 0.1408 for alpha 
level 0.05 was obtained and the value of W-statistic was 0.9740; 

Figure 4: Residuals plot in the case of first order model for tangential force

Figure 5: Residuals plot in the case of first order model for maximum temperature
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thus, the error terms are normally distributed. Additionally, the 
residuals versus case order plot allows for the determination of 
the independence of error terms. More specifically, this plot is 
used in order to detect correlation between error terms and the 
values of the residuals should vary randomly around zero. As it 
can be observed in Figure4, there exists a certain trend in the 
residuals; although the values seem to fluctuate, their values seem 
to increase in an almost constant rate. This is another indication 
that a non-random pattern is likely to exist in the residuals and 
thus a part of explanatory information is essentially captured 
in the residuals. In that case, and regarding the analysis of the 
normal probability plot, there are possibilities that a missing 
variable, a missing higher-order term or a missing interaction 
between terms in the model exists. 

Similar conclusions can be drawn in the case of maximum 
temperature model. In this case, the null hypothesis for the 
Shapiro-Wilk test is rejected with a p-value of 0.0112 and a 
W-statistic value of 0.9532 thus indicating that there is no 
normality in the distribution of residuals, something that can also 
be seen in the residuals’ histogram. Additionally, the observations 
concerning the other residual plots are similar to those for the 
tangential force model and, consequently, the inadequacy of the 
model to represent accurately the experimental data is noted, as 
it was also indicated by the relatively high error percentage in 
predictions in Table 2. Thus, a second order model is proposed.

Second order model

 Accordingly to the previous sub-section, a second-order model is 
assumed in both studied cases with a view to fit the experimental 
results more successfully. The details about the second-order 
model are presented in Table 3. The R2 values of the models are 
0.918 and 0.889 for forces and temperatures, respectively, which 
are very close to 1; the model can be characterized as effective. 
R2 coefficient measures the good fit of the data to the model, 
with value 1 for perfect fit. Furthermore, the R2 is in reasonable 
agreement with adjusted R2, for both cases. In Table 4, for the 
same data used in the first order model, the comparison between 
some experimental and predicted results is presented. It is quite 
clear that second order models provide better results both for 
tangential forces and temperatures. Differences in values are 
below 10%, with an exception of only one example. As in the 
case of the first-order model the calculated p-values indicate 
that both models are statistically significant. Moreover, it is 
found that in both cases, the parameters b1 and b4, which are 
related to the grinding wheel, are not statistically significant, as 
it was indicated to a certain degree from the first-order model in 
which p-values for parameter b1 were greater from those related 
to the other parameters but their value was slightly under 0.05. 
Furthermore, in the case of the tangential force model, the p-value 
corresponding to the x3

2 term indicates that this quadratic term 
can also be neglected.

Table 3: Results concerning the fitting of the second-order model in the two cases

Model type = b0 + b1 x1 + b2 x2 + b3 x3 +b4 x1
2 + b5 x2

2 + b6 x3
2 Output = tangential force

Estimated coefficients

Estimate SE t-value p-value

Intercept (b0) 9.8018 1.5763 6.2183 4.0647e-08

b1 -0.28546 0.38644 -0.73869 0.46275

b2 -23.358 3.5606 -6.5601 1.031e-08

b3 0.74995 0.13745 5.456 8.1327e-07

b4 0.1189 0.26666 0.44589 0.65716

b5 13.926 1.9988 6.9672 1.9821e-09

b6 -0.17981 0.10981 -1.6374 0.10637

Number of observations : 72 Error DOF : 65

RMS error : 0.0661 R-squared : 0.918

Adjusted R- squared : 0.91 p –value : 2.56e-33

Model type = b0 + b1 x1 + b2 x2 + b3 x3 +b4 x1
2 + b5 x2

2 + b6 x3
2 Output: maximum temperature

Estimated coefficients

Estimate SE t-value p-value

Intercept (b0) 8.3459 1.8844 4.4289 3.7115e-05

b1 -0.25856 0.46198 -0.55968 0.57762

b2 -20.384 4.2567 -4.7887 1.0088e-05

b3 0.93772 0.16433 5.7065 3.0747e-07

b4 0.074653 0.31879 0.23418 0.81558

b5 12.568 2.3896 5.2595 1.7278e-06

b6 -0.48642 0.13128 -3.7053 0.00043824

Number of observations: 72 Error DOF: 65

RMS error : 0.079 R-squared: 0.889

Adjusted R- squared : 0.879 p-value: 4.13e-29
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As in the case of the first order regression model, residuals plots 
are created and they are presented in Figure 6 and Figure 7. In 
the case of the normal probability plot, it is observed that most 
of the residual terms lie on the linear curve. The Shapiro-Wilk 
test results prove that, in this case, the null hypothesis can be 
accepted with a p-value of 0.1867 and a W-statistic value of 
0.9761; so, normality of error terms distribution is guaranteed. 
Similarly, the case order plot of residuals indicates that no certain 
pattern exists in the error terms and so they can be considered as 
randomly varying around zero. 

Accordingly, in the case of the temperature model, the normality 

Figure 6: Residuals plot in the case of second order model for tangential force

Figure 7: Residuals plot in the case of second order model for maximum temperature

of the error terms distribution is again confirmed, as the p-value 
of the Shapiro-Wilk test is 0.3000 and the W-statistic value is 
0.9798, thus indicating that the null hypothesis can be accepted. 
This statement is further confirmed by observing the histogram 
of residuals which has a shape similar to normal distribution 
shape, as in the case of tangential force model, in spite of the 
existence of a two outliers. Finally, the case order plot indicates 
that no observable pattern in the sequence of error terms exists.

Concerning the comparison between the two models, based on 
the previous analysis for each model, the second order model is 
clearly more preferable than the first-order model. The value of 
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the adjusted R2 coefficient which can indicate the goodness of fit 
regardless the number of predictors is greater in the case of the 
second order model, thus suggesting a clear improvement in the 
adequacy of the regression model. Accordingly the RMS error 
values are significantly lower in the case of the second order 
model and so the observations are lying closer to the regression 
model outputs, providing a strong indication of the improvement 
of the precision of the model.

Finally, the second order model was able to predict the actual 
experimental results with a significantly lower error value, as it 
can be seen by comparing the results from Table 2 and 4. Thus, 
taking account of all aforementioned points, it can be concluded 
that the second order model is more preferable than the first 
order model.

Analysis of variance test

Before comparing the second-order linear regression model 
results with the results obtained from artificial neural networks, 
analysis of variance test is conducted for the second-order model. 
In Tables 5 and 6, the results of the analysis of variance for the 
tangential force and temperature, respectively, are tabulated. The 
developed models are tested at 95% confidence level, as P-value 
is lower than 0.05. The high F-values imply that the model is 
significant and quadratic terms are also significant, except for the 
term x1

2 in both models and the term x3
2 in the tangential force 

model, as it was also deduced from the analysis of the regression 
model results in previous subsections.

Artificial Neural Networks
The experimental data from Reference [16] were treated in 
order to become suitable for input to the program. All the data 
were normalized; i.e., all input and output data were suitably 
transformed so that their mean value be equal to zero and the 
standard deviation equal to one. Normalization is a method 
used in neural networks so that all the data present a logical 
correlation. Otherwise, the neural network could suppose that 
a value is more significant than the others because its arithmetic 
value is greater. This could damage the generalization ability 
of the network and lead to overfitting. After normalization all 
inputs are equally important in the training of the network. 
Then, the number of hidden layers, the number of neurons, 
the activation function and the learning algorithm which are 
most suitable for the problem were determined. As activation 
function the hyperbolic tangent sigmoid transfer function was 
used because the connection between the input and the output 
values is not linear and such a function can provide good results. 
For the learning algorithm the back propagation one is very 
commonly used. However, the Levenberg-Marquardt algorithm 
which is network training function that updates weight values 
according to Levenberg-Marquardt optimization was used 
[16]. Furthermore, various combinations of hidden layers and 
neurons were worked out in order for the best possible model to 
be found. Each model was trained both with back propagation 
and Levenberg-Marquardt algorithm and was trained five times 
in order to clearly determine whether a model truly converges to 
a low value or it is a false value due to a local minimum. 

Table 4: Comparison of predicted results with experimental results in both cases

Output variable: tangential force (N/mm)

Process parameters Results

Grinding Wheel Workpiece material Depth of cut (μm) Experimental result Predicted value Difference (%)

3 1 50 10.66 11.0614 3.77

6 1 30 7.23 7.9220 9.57

3 3 50 16.09 14.8189 7.90

6 3 30 11.05 11.6795 5.70

Output variable: maximum temperature (oC)

Process parameters Results

Grinding Wheel Workpiece material Depth of cut (μm) Computed result (FEM) Predicted value Difference (%)

1 1 50 688.6 670.5679 2.62

3 1 50 748.0 756.9794 1.20

6 1 30 631.0 694.1024 10.00

2 3 30 1074.0 939.6809 8.23

Table 5: Analysis of variance test for the second-order model for the prediction of tangential force 

Term Sum of squares Degrees of freedom Mean squares F-value p-value

X1 0.035664 1 0.035664 8.169 0.0057195

X2 1.1486 1 1.1486 263.1 1.5479e-24

X3 1.7633 1 1.7633 403.89 1.3644e-29

X1
2 0.00086798 1 0.00086798 0.19881 0.65716

X2
2 0.21192 1 0.21192 48.542 1.9821e-09

X3
2 0.011705 1 0.011705 2.6812 0.10637

error 0.28378 65 0.0043658
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It is very important for the model to be able to generalize and use 
the function that emerges from the analysis with data that were 
not inserted during its training. For this reason the experimental 
data were divided into three groups. The first and bigger one was 
used for training, the second one was used for validation and the 
third one was used for testing. The validation group determines 
when the training stops. The MSE of the results is calculated and 
when its value does not decent anymore the training ends. The 
MSE is also calculated for the test group values and thus it is 
shown whether the model can successfully predict the output. 
This is the so-called early stopping technique.

For the evaluation of the generalization ability of the trained 
neural networks a linear fit between the output of the model and 
the experimental data was performed. The graph of the linear 
fit is presented in Figure 8 for tangential force and Figure 9 for 
temperature; note that T represents the experimental results 
and A the output values of the model. For tangential force, the 
best linear fit function is calculated as being: A=0.951T+0.263, 
while the correlation coefficient R is equal to 0.974, with R=1 
meaning that the best linear fit is achieved and the A=T curve 
match perfectly. For temperature, the best linear fit function 
is calculated as being: A=0.933T+30.9, while the correlation 

Figure 9: Correlation between experimental data 
and neural network output for temperatureFigure 8: Correlation between experimental data 

and neural network output for tangential force

Table 6: Analysis of variance test for the second-order model for the prediction of maximum temperature 

Term Sum of squares Degrees of 
freedom Mean squares F-value p-value

X1 0.062455 1 0.062455 10.009 0.0023688

X2 2.2037 1 2.2037 353.17 5.6873e-28

X3 0.72878 1 0.72878 116.8 3.71e-16

X1
2 0.00034218 1 0.00034218 0.05484 0.81558

X2
2 0.1726 1 0.1726 27.663 1.7278e-06

X3
2 0.085664 1 0.085664 13.729 0.00043824

error 0.40558 65 0.0062396

Table 7: Comparison of second-order linear regression model and artificial neural networks model concerning the tangential force prediction

ANN Second-order model Experimental value Difference (ANN) % Difference (2nd order) %

9.77 11.0614 10.66 8.35 3.77

7.15 7.9220 7.23 1.10 9.57

14.89 14.8189 16.09 7.46 7.90

12.31 11.6795 11.05 11.41 5.70

Table 8: Comparison of second-order linear regression model and artificial neural networks model concerning the maximum temperature 
prediction

ANN Second-order model Computed value (FEM) Difference (ANN) % Difference (2nd order) %

702.8 670.5679 688.6 2.06 2.62

669.9 756.9794 748 10.44 1.20

585.8 694.1024 631 7.16 10.00

1043 939.6809 1074 2.83 8.23
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coefficient R is equal to 0.968. It can be concluded from the 
results that the predicted values are very close to experimental 
ones, thus indicating that the model can successfully predict 
grinding forces and temperatures. Tables 7 and 8 compare the 
second order regression models with neural networks, for forces 
and temperatures. It is often argued in the relevant literature that 
for complicated problems, neural networks perform better than 
regression models [17-20]. It can be concluded from the analysis 
that both methods can provide reliable results.

Conclusions
In this paper, regression analysis and artificial neural networks 
models are employed for the prediction of grinding forces and 
temperatures in grinding. These parameters are important for 
this manufacturing process as they are connected to the quality 
of the final product. Knowing these parameters before the actual 
process takes place, its performance is evaluated and optimized. 
It was decided to use statistical and soft computing methods for 
the estimation of forces and temperatures in grinding.

First, linear regression models were constructed. A first 
order model was proven to provide poor results, given to the 
complexity of the addressed problem. Next, second order models 
were constructed. These models exhibited better results, able 
to adequately predict the performance of grinding. Analysis 
of variance was also used for the evaluation of the models and 
the significance of the terms, for the calculation of forces and 
temperatures.

Soft computing techniques have been widely used in manufactur-
ing technology. Artificial neural networks were constructed for 
the prediction of grinding forces and maximum temperature. The 
models’ architecture and parameters were determined by testing 
different models and comparing their results. The Levenberg-
Marquardt algorithm was used for the training of the program 
and the results of the model show very good convergence with 
experimental data. This way the grinding forces and tempera-
tures are successfully predicted and can be used for the optimiza-
tion of the process. The training time of each model is relatively 
small, owing to the selected training algorithm that converges in 
only a few epochs and the early stopping technique which was 
applied to the models. A comparison between the results of the 
two different modeling approaches used, indicates that both of 
them can produce reliable results in a quick and computation-
ally undemanding manner. Especially, the regression models are 
proven to be particularly useful for the establishment of empiri-
cal relationships between various machining process parameters 
as the form of these models is actually a mathematical formula 
which can be easily manipulated and employed for further inves-
tigations e.g. optimization of process parameters and reduction 
of cost. 
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