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Abstract
Free vibration of transversely isotropic circular plates with various 
edge boundary conditions is analyzed on the basis of theory of 
elasticity without a priori plate assumptions. The governing 
equations for vibration of transversely isotropic circular plates 
are derived from the three-dimensional equations of elasticity in 
the cylindrical coordinates. By means of separation of variables, 
two sets of solutions are obtained, which enable us to satisfy 
various edge boundary conditions of the problems and determine 
the natural frequencies of the circular plates. Numerical results 
for three kinds of edge conditions are evaluated and compared 
with those obtained according to 2D plate theories such as 
DQM, HSDT and Mindlin’s solutions. The study shows that our 
results can find much more natural frequencies of circular plates 
than the 2D solutions for circular plates. These 2D solutions are 
applicable while the ratios of thickness to radius of the plates are 
lesser than 0.05 and the edge conditions are clamped or simply-
supported.

Keywords: Circular plates, Elasticity, Free vibration, Natural 
frequency.

Introduction
In the literature, considerable studies have been reported on the 
vibration analysis of plates. According to the classical 2D theory 
of flexural motion of elastic plates (CPT), the axial shear strains 
and normal stress have been neglected. Hence CPT cannot 
be expected to give good results for the high-order modes of 
natural frequencies. Mindlin [1] considered the influence of 
rotatory inertia and shear on isotropic plates and derived a more 
comprehensive 2D theory (first-order shear deformation plate 
theory, FSDT) which is analogous to Timoshenko’s theory for 
bars. Mindlin’s theory satisfies constitutive relations for transverse 
shear stresses and shear strains by using shear correction factor. 
The value of this factor is not unique but depends on the material, 
geometry, loading and boundary conditions. Recently, Liew 
et al. [2] had used the differential quadrature method (DQM) 
to analyze circular Mindlin’s plates. But both CPT and FSDT 
cannot satisfied all the equations of elasticity and consider only 
the deflections of middle planes of plates.

The 2D elasticity solutions play important role in validation of 
results of thick plate theories. Reddy’s simplified higher order 
theories (HSDT) [3] gave a parabolic variation of transverse 
shear stress through the thickness of the plate satisfying the shear 
stress free boundary conditions on the top and bottom surfaces 
of the plate. Thus, it does not require the shear correction factor. 
And Hosseini-Hashemi et al. [4] had used HSDT to establish 
exact closed-form frequency equations for thick circular plates. 
Besides the 2D elasticity solutions, there are a few articles 
which studied the vibrations of circular cylinders by using the 
numerical methods. For examples, Leissa and So [5] presented 
the resonance frequencies of elastic solid cylinders with various 
length to radius ratios and Poisson’s ratios using the Ritz method. 
To analyze the free vibration of anisotropic cylinders, Heyliger [6] 
used functions that individually exactly satisfy the axisymmetric 
equations of motion in conjunction with the Ritz method. 
And Buchanan and Chua [7] studied isotropic and anisotropic 
cylinders using the finite element method. 

Hutchinson [8] developed a series solution of the general 3D 
equations of elasticity and used it to find natural frequencies for 
the vibrations of solid elastic cylinders with traction-free surfaces. 
The method of solution involves combining exact solutions of 
the governing equations in three series which term by term 
satisfy three of the six boundary conditions. The remaining 
three boundary conditions are satisfied by orthogonalization on 
the boundaries. Lusher and Hardy [9] used the same method 
to analyze transversely isotropic finite cylinders with stress 
free boundary conditions. Ebenezer [10] extended the method 
used by Hutchinson to determine the vibration responses of 
isotropic solid cylinders to arbitrary distributions of stresses 
on the boundaries. Ding [11] proposed the exact solutions for 
free vibrations of transversely isotropic circular plates, but the 
edge conditions considered were limited to be slide-contact and 
elastic-supported.

In this work, a method is presented for calculating the natural 
frequencies for vibrations of transversely isotropic circular plates 
with various thickness to radius ratios and edge conditions. The 
axial and radial displacements are expressed as a sum of two 
infinite series. One series contains Bessel functions that form a 
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complete set in the radial direction and another contains Fourier 
functions that form a complete set in the axial direction. Each 
term in both the series is an exact solution to the governing 
equations of displacements and has coefficients that are used 
to satisfy boundary and edge conditions. The stresses are also 
expressed in terms of complete sets of functions by using the 
expression for displacement. The coefficients in the series are 
determined by using the orthogonal properties of the functions 
to satisfy the boundary and edge conditions. Numerical results 
are presented to illustrate the natural frequencies of transversely 
isotropic circular plates. The results are compared with those 
obtained according to the Mindlin and HSDT plate theories, and 
the applicability of those 2D methods is also discussed. 

Formulation of Problem 
Since the displacement and traction BC can be expressed 
directly by the displacement vector u  and the stress vectors 

is (where the indices i= 3,2,1  stand for zr ,,q , respectively), 
we reformulate the basic equations of anisotropic elasticity in 
cylindrical coordinates [12] in terms of these vectors and obtain 
the following a system of 2nd-order partial differential equations 
for u :
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denotes the transpose, iu  are the displacement components 

and σij are the stress components; r∂ , q∂ , z∂  denote partial 
differentiation with respect to r , q  and z , respectively, I  is 
the identity matrix;
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ijklc  are the 21 elastic constants in cylindrical coordinates; r  is 

the mass density of the medium; t∂  denote partial differentiation 
with respect to the time t. The solutions of these equations will 
contain integration constants which should be determined from 
displacements or stresses which may be prescribed at the curved 
and flat boundaries of the cylinder.

Consider an elastic circular plate of radius a and thickness h. 
Let us locate the origin of the cylindrical coordinates ),,( zr q  
at the center of plate. With z axis being the axis of symmetry, 
the boundary conditions on the bottom plane at z=-h/2 and the 
upper plane at z= h/2 are traction-free:
[ ] [ ].0002/ =±= hzzzzrz sss q

The edge conditions at r=a are traction-free or clamped or their 
combination. Specifically,

(1) Clamped:

(2) Simply-supported:

(3) Traction-free:

Steady-State Harmonic Response of Circular Plate
By using the following non-dimensional parameters: 
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we consider the steady-state harmonic vibration of a circular 
plate and seek the solution to Eq. (1) in the form
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where w  is the natural frequency to be determined; ( )ZRur ,∗ , 
( )ZRu ,∗

q , and ( )ZRuz ,∗  are functions of the spatial variables.

Solution by means of eigenfunction expansion requires 
determining the eigenvalues and eigenfunctions that satisfy 
homogeneous state equation and homogeneous BC in either r or 
z coordinate and deriving the orthogonality of the eigenvectors. 
Here we propose a method which does not require determining 
the eigensolution. 

Consider first the case of the “even” solution in which the in-

plane displacements ( )ZRur ,∗  and ( )ZRu ,∗
q  are symmetrical to the 

middle plane of the plate.

Solution in form of Fourier- Bessel series

First, we seek the solution in the form of Fourier- Bessel series:
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where μm =2mπ; Unmi, Vnmi (i=1,2) and Wnm are unknown constants; 
In is the modified Bessel function of the first kind of order n; λm is 
a parameter to be determined.

Substituting Eq. (9) in Eq. (1), after manipulation using the 
derivative formulas of Bessel functions [13], we arrive at

with cʹij = cij / c11  and the non-dimensional frequency parameter 
to be determined:
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To each μm there corresponds a solution of Eq. (9) determined 
within a constant. As a result, 

where 0a ,  and 
mb  are constants to be determined; the known 

constants and functions are

Solution in form of Fourier exponential series

Secondly, we seek the solution in the form of Fourier exponential 
series:

( )
( )
( )

( ) ( ) ( )[ ]
( ) ( ) ( )[ ]

( ) ( )
,

exp
exp
exp

,
,
,

1
11

11

2

∑
∞

=
+−

+−

∗

∗

∗

















+
−

=
















p
pnpnp

pnpnpnp

pnpnpnp

z

r

RJZW
RJRJZV
RJRJZU

ZRu
ZRu
ZRu

lm
llm
llm

q

where Jn is the Bessel function of the first kind of order n; λp is the 
root of Jn(λp)=0; Unp, Vnp and Wnp are unknown constants; μp is a 
parameter to be determined. 

Substituting Eq. (16) in Eq. (1), after manipulation using the 
derivative formulas of Bessel functions, we arrive at 

where ;2,1=k

To each λp there corresponds a solution of Eq. (9) determined 
within a constant. As a result,

where dpl  is a constant to be determined; the known constants 
and functions are
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Satisfaction of the BC at z=±h/2

Combining two sets of solution in Eqs. (13)-(15) and in (18)-
(20), we obtain a solution in which the first series is Fourier-
Bessel series with exponential power μmZ and argument λmkR; 
the second one is Fourier-Bessel series with argument λpR and 
exponential power μplZ. While either series alone does not satisfy 
all the BC, the two series solutions together are made to satisfy 
the BC of the problem.

To this end, imposing the BC in the z direction yields a Fourier-
Bessel series with argument λpR and a series with argument λmkR. 
Upon representing the prescribed functions in R at the boundary 
planes and the series with argument λmkR in Fourier-Bessel series 
with argument λpR to make them compatible, the unknown 
constants in the series can be determined by comparing the 
coefficients in an elementary way.

Thus imposing the traction-free BC, Eqs. (2), at z=±h/2 on the 
relevant stress components in Eqs. (14) and (19) leads to

Eq. (21) can be decoupled into these equations:

which can be reduced to
,021 == pp dd

( ) ( ) ,2/sinh2/sinh 111222 ppppppp fHfHf == mm
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The functions Jn(λ01 R) and In (λmk R)  in Eq. (30) can be expressed 

in terms of ( )n pJ Rl : 
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Eq. (32) can be rewritten as

                                

where pf  and ma  are two kinds of unknown constants; 

Satisfaction of the BC at r=a

Likewise, imposing the BC in the radial direction yields a series 
in exponential power of μplZ and a Fourier series in exponential 
power of μmZ. To make the two series compatible, it is necessary 
to express the prescribed functions in z at the boundary surfaces 
and the series with exponential power μplZ in Fourier series with 
exponential power of μmZ, then the unknown constants in the 
series can be determined by comparing the coefficients. 

According to Eqs. (3)-(5), the edge condition at r=a are traction-
free or clamped or their combination.

Clamped BC at r=a: Imposing Eq. (3) on the relevant 
displacement components in Eqs. (13) and (18) leads to

where

From Eqs. (34)-(36) we have

(21)

(22)

(23)

(24)

(25)

(27)

(26)

(28)
(29)

(30)

(31)

(32)

(33)

(34)

(35)

(36)



J Robot Mech Eng Resr 1(2).                                                                                                                                                                                            Page | 32

WD Tseng, JQ Tarn, LY Tung, WY Liang (2015) Free Vibration of Circular Plates with Various Edge Boundary Conditions by 3-D Elasticity Theory. J 
Robot Mech Eng Resr 1(2): 28-35.

and

where

The function cosh(μplZ)  in Eq. (40) can be expressed in terms of 

)cos( Zmm :

Where 

For each Zmmcos , the equation reduced from Eq. (40) can be 
written as 

where

Simply supported BC at r=a: Likewise, imposing Eq. (4) on the 
relevant displacement and stress components in Eqs. (13)-(15) 
and (18)-(20) and then expressing the function cosh(μplZ)  in 

terms of )cos( Zmm  leads to a set of equations like Eq. (42). 

Traction-free BC at r=1: Likewise, imposing Eq. (5) on the 
relevant displacement components in Eqs. (14)-(15) and (19)-
(20) and then expressing the function cosh(μplZ)  And sinh (μpl 

Z)  in terms of )cos( Zmm  and )sin( Zmm , respectively, leads to a set of 
equations like Eq. (42).

 Eq. (42) for clamped BC (or for simply-supported or traction-
free BC) at r=a and Eq. (33) constitute a system of equations

in which the unknowns are pf  and ma . The boundary conditions 
only lead to the relationship between the undetermined constants. 
Thus, taking N terms of the two series for computation, we arrive 
at a system of 2N algebraic equations for the 2N unknowns 
(m=1,2,...,N, p=1,2,...,N), which has nontrivial solutions if and 
only if the determinant of the coefficient matrix is zero. This 

condition leads to a transcendental equation in terms of non-
dimensional frequency parameter v  which can be determined 
by using a standard method for finding roots such as the bisection 
method. The solution process is to choose a value of v  and 
evaluate the determinant. If the determinant is zero, the value is 
one of the frequency parameters.

The case of the “odd” solution in which the in-plane displacements 
( )ZRur ,∗  and ( )ZRu ,∗

q  are anti-symmetrical to the middle plane 
of the plate can be solved in a similar process like Sections 3.1-3.4 
except the parameter μm being taken as (2m-1)π.

Results and Discussions
To examine quantitatively the natural frequency of steady-
state harmonic vibration in circular plates, we consider the 
axisymmetric case for simplicity and take c33 / c11= 5, 1, 3/4, 
1/2, 1/3 and 1/4 for transversely isotropic materials. The ratios 
of thickness to radius of the plates are taken to be h/a=0.001, 
0.05, 0.1 and 0.2. For isotropic plates, Liew et al. [2] adopted 

the non-dimensional frequency parameter 2/ aDh wra =  where 
 . The parameter v  of present analysis can be 

converted to a  by using the relation  
and compared with those of DQM [2] and Hosseini-Hashemi’s 
HSDT [4] results. For transversely isotropic plates, we use the 
non-dimensional frequency parameter β = εϖ to present our 
results. And for comparison, the parameters b  have also been 
calculated from Mindlin’s solution for circular plates [11].

In evaluating the natural frequency, Tables 1-3 display the 
results of h/a=0.001 for isotropic plates under three kinds of 
edge conditions by taking 5, 10, 15 and 20 terms of the series for 
computation. The tabulated values are the lowest five frequency 
parameters and show the convergences of the frequencies. 

Table 1: α of h/a=0.001 for isotropic materials at clamped edges 

Terms
Mode

1 2 3 4 5

5 10.2245 39.1000 87.9500 159.5000 245.4000

10 10.0870 39.7477 88.6000 159.5000 245.4000

15 10.1690 39.3250 88.6025 157.7500 245.8500

20 10.2375 39.2972 89.2750 158.2915 246.9500

Table 2: α of h/a=0.001 for isotropic materials at simply-
supported edges

Terms
Mode

1 2 3 4 5

5 5.0519 29.8687 74.2334 138.3771 222.2378

10 5.0841 29.8597 74.2215 138.9977 222.3721

15 4.9000 29.8041 74.2162 138.1594 222.2155

20 4.9300 29.6302 74.2131 138.3528 222.2123

Table 3: α of h/a=0.001 for isotropic materials at traction-free 

(37)
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(44)
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edges

Terms
Mode

1 2 3 4 5

5 8.9499 36.4514 83.4004 140.1872 244.4387

10 8.9506 38.2400 86.9795 157.0156 244.4500

15 8.9506 38.2509 86.9795 156.9983 245.3999

20 8.9508 38.2509 87.0039 156.9362 245.4110

As shown in Figure 1 for traction-free edge conditions, the 
solutions converge as more terms in the series are chosen and 
taking about 10 terms produce excellent results for the lower 
frequencies. The higher mode parameters always converge 
slower. As the terms increase, the oscillating result is closer to a 
mean value. To achieve satisfactory convergence, it is necessary 
to take no lesser than 15 terms in each series for higher modes. 

Tables 4-6 present the frequency parameters a  obtained using 
20 terms in each series and of various h/a for isotropic plates 
under three kinds of edge conditions. In these tables the results 
obtained by DQM and HSDT are also presented for comparison. 
It is found that the frequency parameters decrease as h/a increases. 
And the comparisons show that the DQM and HSDT results are 
closer to those of the present solutions when the value of h/a is 
between 0.05 and 0.001. Especially for h/a equal to 0.001, the 
errors of frequency parameters of DQM and HSDT to present 
solution are under 3%. As h/a increases to 0.1~0.2, the error 
increases for higher modes. Since the 2D plate theory assumes 
that the axial deformation is very small and the axial normal 

stress can be neglected thus the equations of motion and both 
the top and bottom surface BC are not all satisfied, some higher 
frequencies even cannot be found for thicker plates by DQM and 
HSDT rather than the present results which consist of the “even” 
and “odd” modes stated in Section 3. As for the lateral boundary 
conditions, the errors of frequency parameters for thicker plates 
with traction-free edges are greatest among those of three kinds 
of BC. The clamped edge provides much stronger constraint to 
plate, so the natural frequencies are larger than the other two 
conditions. Since the real stress distributions are less uniform as 
h/a increases and the edge boundary conditions are relaxed and 
satisfied only in an average sense by DQM and HSDT, these two 
methods are not applicable while h/a is greater than 0.05 and the 
edge conditions are traction-free.

Figure1: Comparison of α of different modes and terms at traction-free edges
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Table 4: Comparison of α of various h/a for isotropic materials 
at clamped edges

h/a Method
Mode

1 2 3 4 5

0.001 Present 10.238 39.297 89.275 158.292 246.950

HSDT 10.216 39.771 89.102 158.179 246.994

DQM 10.216 39.771 89.102 158.180 246.990

0.05 Present 9.721 36.5340 72.4538 82.411 98.569

HSDT 10.146 38.8706 - 84.995 -

DQM 10.145 38.8550 - 84.995 -

0.1 Present 9.414 34.8754 49.2843 74.431 92.319

HSDT 9.946 36.5489 - 75.954 -

DQM 9.941 36.4790 - 75.664 -

0.2 Present 9.064 26.621 46.3461 51.030 74.817

HSDT 9.265 30.475 - 57.533 -

DQM 9.240 30.211 - 56.682 -

Table 6: Comparison of α of various h/a for isotropic materials at traction-free edges

h/a Method
Mode

1 2 3 4 5

0.1 Present 4.8780 28.2333 49.2109 63.8099 72.4778

HSDT 8.8688 36.0613 - 76.7776 -

DQM 8.8679 36.0410 - 76.676 -

0.2 Present 4.7151 24.7682 36.4160 45.7227 57.2846

HSDT 8.5084 - 31.1748 - 59.9152

DQM 8.5051 - 31.1110 - 59.6450

Table 5: Comparison of α of various h/a for isotropic materials at simply-supported edges

h/a Method
Mode

1 2 3 4 5

0.05 Present 4.906 29.366 71.579 126.470 142.417

HSDT 4.925 29.327 71.780 130.429 -

DQM 4.925 29.323 71.756 130.350 -

0.1 Present 4.876 28.210 49.284 62.957 72.088

HSDT 4.894 28.255 - 66.024 -

DQM 4.894 28.240 - 65.942 -

0.2 Present 4.786 24.648 35.182 53.857 56.564

HSDT 4.779 25.041 - 52.739 -

DQM 4.777 24.994 - 52.514 -

Tables 7-8 display the frequency parameters b  obtained using 
20 terms in each series and of h/a=0.001 and 0.05 for various 
transversely isotropic plates under simply-supported edge 

conditions. For weaker 33 11/c c , the natural frequencies are 
smaller and two adjacent frequencies are closer. Stronger 33 11/c c  
means much stronger resistance to deformation, the natural 
frequencies are larger. The results obtained by Mindlin’s solutions 
are also included in these tables for comparison. It can be found 
that for h/a=0.001 and higher modes of frequency the results of 
Mindlin’s solutions are closer to those of present solutions. The 
errors of frequency parameters of Mindlin’s solution to present 

solution increase as 33 11/c c  decrease. While 33 11/c c is 1/4, the 
first mode of Mindlin’s solutions cannot be found for h/a=0.001 
and 0.05. Thus the Mindlin’s solutions are not applicable while 

33 11/c c is less than 1/4. 
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Table 7: Comparison of β of h/a=0.001 and various 33 11/c c at 
simply-supported edges

33 11/c c Method
Mode

1 2 3 4

5
Present 1.4948 8.6101 21.2065 39.3864

Mindlin 1.4414 8.4548 21.0425 39.2194

1
Present 1.2780 7.7349 19.3562 36.0767

Mindlin 1.2872 7.7515 19.3411 36.0751

3/4
Present 1.2470 7.6121 18.7708 34.8694

Mindlin 1.2166 7.4387 18.5861 34.6808

1/2
Present 1.0759 6.9586 17.1775 31.9150

Mindlin 1.0594 6.7691 16.9753 31.7084

1/3
Present 0.7691 5.8456 14.4633 26.8820

Mindlin 0.7516 5.6133 14.2187 26.6334

1/4
Present 0.3039 4.4703 11.1074 20.6587

Mindlin - 4.1280 10.7678 20.3207

Table 8: Comparison of β of h/a=0.05 and various 33 11/c c at 
simply-supported edges

33 11/c c Method
Mode

1 2 3 4

5
Present 1.4339 8.4684 20.4284 36.8528

Mindlin 1.4372 8.3044 20.1460 36.2821

1
Present 1.2796 7.6592 18.6693 32.9859

Mindlin 1.2840 7.6314 18.6171 33.6849

3/4
Present 1.2148 7.5145 18.2228 26.5812

Mindlin 1.2138 7.3305 17.9309 32.5102

1/2
Present 1.0643 6.8851 16.7524 24.5547

Mindlin 1.0574 6.6837 16.4516 29.9606

1/3
Present 0.7839 5.8032 14.2025 19.5120

Mindlin 0.7506 5.5587 13.8756 -

1/4
Present 0.2940 4.4484 10.9782 14.3546

Mindlin - 4.0999 10.5818 -

Conclusions
An exact analysis of free vibration of circular elastic plates of 
transversely isotropic materials with various edge conditions has 
been developed. We can seek the 3D solution by using separation 
of variables and assume it as a sum of two infinite series. One 
series contains Fourier functions that form a complete set in the 
axial direction and another contains Bessel functions that form 
a complete set in the radial direction. Each term in both series is 
an exact solution to the governing equations and has a coefficient 
that is used to satisfy boundary conditions. 

The study shows that our results can find much more natural 
frequencies of circular plates than DQM, HSDT and Mindlin’s 
solutions for circular plates. As h/a is greater than 0.05 or the 
plates are under traction-free edge conditions, the errors of 
frequency parameter of DQM and HSDT solution to present 
solution increase and some higher modes of frequency cannot 

be found by these methods. And as 33 11/c c is less than 1/4, 
the errors of frequency parameter of Mindlin’s solution to 
present solution increase and the first mode cannot be found 
by Mindlin’s solutions. These 2D solutions are applicable while 
h/a is lesser than 0.05 and the edge conditions are clamped or 
simply-supported. 
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